
A MARSHALL CAVENDISH 	COMPUTER C i_VSE IN WEEKLY PARTS

LEARN PROGRAMMING - FOR 4IUN AND THETUIP

Vol. 3 	 No 35

APPLICATIONS 22

Zoom into the micro world with this powerful program

GAMES PROGRAMMING 35

LUNAR TOUCHDOWN 	 1088

A complete arcade-type game for you to enter

BASIC PROGRAMMING 73

HOW'S IT SOUND? 	 1091

Using your micro to explore the world of digital sound

GAMES PROGRAMMING 36

THE GAME OF FOX AND GEESE 	
1091

Make your computer think for itself in INPUT's new game

MACHINE CODE 36

CLIFFHANGER: STARTING OFF 	1101m

Start Willie off on his picnic

BASIC PROGRAMMING 74

&HOW BASIC PROGRAMS ARE STORED AEA
Find out what your machine does with your programs

INDEX
The last part of INPUT, Part 52, will contain a complete, cross-referenced index.
For easy access to your growing collection, a cumulative index to the contents
of each issue is contained on the inside back cover.

PICTURE CREDITS
Front cover, Dave King. Pages 1081, 1083, 1084, 1086, Gary Wing. Pages 1082,
1092, 1100, Peter Reilly. Page 1088, Ian Craig. Page 1090, NASA. Pages 1091,
David Redfern Photography, Paul Chave. Page 1094, Paul Chave. Pages 1096, 1098,
1100, Phil Dobson. Pages 1011, 1102, 1104, Steve Rippington. Pages 1107, 1111,
Dave King.

© Marshall Cavendish Limited 1984/5/6
All worldwide rights reserved*

The contents of this publication including software, codes, listings,
graphics, illustrations and text are the exclusive property and copyright of
Marshall Cavendish Limited and may not be copied, reproduced,
transmitted, hired, lent, distributed, stored or modified in any form
whatsoever without the prior approval of the Copyright holder*
Published by Marshall Cavendish Partworks Ltd, 58 Old Compton Street, London W1V SPA,
England. Typeset by MS Filmsetting Limited, Frome, Somerset. Printed by Cooper Clegg
Web Offset Ltd, Gloucester and Howard Hunt Litho, London.

HOW TO ORDER
YOUR BINDERS
UK and Republic of Ireland:
Send £4.95 (inc p & p) (1R£5.95) for
each binder to the address below:

Marshall Cavendish Services Ltd,
Department 980, Newtown Road,
Hove, Sussex BN3 7DN

Australia: See inserts for details, or
write to INPUT, Times Consultants
PO Box 213, Alexandria, NSW 2015

New Zealand: See inserts for details, or
write to INPUT, Gordon and Gotch
(NZ) Ltd, PO Box 1595, Wellington
Malta: Binders are available from local
newsagents.

There are four binders each holding 13 issues.

BACK NUMBERS
Back numbers are supplied at the regular cover price (subject to availability).

UK and Republic of Ireland:
INPUT, Dept AN, Marshall Cavendish Services,
Newtown Road, Hove BN3 7DN

Australia, New Zealand and Malta:
Back numbers are available through your local newsagent.

COPIES BY POST
Our Subscription Department can supply copies to any UK address regularly at £1 .00 each.
For example the cost of 26 issues is £26.00; for any other quantity simply multiply the number
of issues required by £1.00. Send your order, with payment to:

Subscription Department, Marshall Cavendish Services Ltd,
Newtown Road, Hove, Sussex BN3 7DN

Please state the title of the publication and the part from which you wish to start.

HOW TO PAY: Readers in UK and Republic of Ireland: All cheques orpostal orders
for binders, back numbers and copies by post should he made payable to:

Marshall Cavendish Partworks Ltd.

QUERIES: When writing in, please give the make and model of your computer, as
well as the Part No., page and line where the program is rejected or where it does
not work. We can only answer specific queries— and please do not telephone. Send
your queries to INPUT Queries, Marshall Cavendish Partworks Ltd, 58 Old
Compton Street, London WI V SPA.

INPUT IS SPECIALLY DESIGNED FOR:
The SINCLAIR ZX SPECTRUM (16K, 48K,128 and +),
COMMODORE 64 and 128, ACORN ELECTRON, BBC B
and B+,and the DRAGON 32 and 64.

In addition, many of the programs and explanations are also
suitable for the SINCLAIR ZX81, COMMODORE VIC 20, and
TANDY COLOUR COMPUTER in 32K with extended BASIC.
Programs and text which are specifically for particular machines
are indicated by the following symbols:

SPECTRUM 16K, IICK
4814128, and + 	COMMODORE 64 and 128

la ACORN ELECTRON,
BBC B and B+ 14 DRAGON 32 and 64

 TRSBO
7181 	VIC 20 T. TAN

 COMPUTER

DRAWING A PICTURE
SETTING THE SCALE

MAGNIFYING AND REDUCING
HIDING DETAIL IN THE PICTURE
MAKING ACCURATE DRAWINGS

This versatile program can reduce a
picture to a microscopic dot or
expand it to astronomical
dimensions. Use it to create highly
accurate drawings or as a game

The program that accompanies this article is
rather more fun than the usual applications
program* In fact it can be used either as a
game or an application*

It lets you draw a picture and then magnify
any part of it to draw in more detail down to a
microscopic scale* You can change the scale at
any time using magnifications of many
thousands or even hundreds of thousands. An
enormous amount of detail can be hidden in a
picture which disappears from view as you
pan out, and reappears again as you zoom in.

Imagine yourself with a powerful micro-
scope peering more and more closely at some
part of a scene. Detail appears as the magnific-
ation increases and blurs into nothing as it
decreases* Or you can look at it the other way*
Starting with a view of your house you can
imagine moving further and further away out
into space* One by one your house, town,
country and even earth itself disappears into a
dot in the distance. Similar graphics effects
can be achieved using the relatively short
program given here*

One way of using the program is to turn it

into a game for two people* One person draws
a scene hiding some 'treasure' at a very small
magnification somewhere deep in the picture*
The other person then has to search for the
treasure. It can be surprisingly difficult*
Imagine starting with a square 10 centimetres
across* If this is magnified 5000 times the
original square turns into an enormous area of
a quarter of a million square metres—plenty
of room to hide almost anything in*

The program has serious applications too,
of course. Very accurate line drawings can be
made by entering detail at a much larger scale
than usual and then reducing it to the correct
size* Accurate technical drawings can be built
up a section at a time in this way. The
program is also useful in teaching. For
example, in a geography lesson, the position
of major towns could be marked on a map of
the country but at a much reduced scale. At
normal magnification they would only be a
residual dot and would only appear in detail if
you chose to zoom in at the correct position in
the picture*

You could even enter the names of the
towns—although you cannot enter text with
this program, it is a simple enough matter to
draw out the letters* Use a large scale to draw
them first—in the correct position—then re-
duce them to the right size.

HOW TO USE THE PROGRAM
When you RUN the program you are presen-
ted with a blank screen and a tiny flashing
cursor at the centre* There are also two
numbers. The one on the left gives the scale of
the present screen, 1 to start with, and the one
on the right gives the number of lines drawn*
This is dimensioned to a maximum of 600 at
the start of the program* The program is
controlled from the keyboard and is ex-
tremely easy to use*

On all but the Commodore, the cursor
keys move the dot around the screen*
The Commodore uses @ and / for up and,/
down, and : and ; for left and right. You
can speed up the movement of the cur
by simultaneously pressing 'SYMBOL SHIFTI,
on the Spectrum, 'SHIFT' on the Com-
modore, I COPY I on the Acorn and
ICLEARI on the Dragon and Tandy.

The other keys used are L, M, C, A
D, I, 0 and Z* Here's what they do.11
Press L to draw a line to the cur-
sor or M to move to the cursor
without drawing a line. Pressing
C returns the cursor to the
centre of the
screen*

If you magnify this house

If you find you've made a mistake, press D
for delete and you'll be asked how many lines
you want to delete. The program counts back-
ward from the last line drawn and deletes
the correct number of lines. The 0 key out-
puts a file so you can save your drawing, and I
inputs a file to load in a saved picture.
The Acorn program works with both tape and
disk. For the other computers, changes for
disk are given after the main program.

Now for the interesting part. The Z
(Zoom) key allows you to change the scale of
the picture. The scale, or magnification, is
entered as a number; for example, 2 doubles
the scale and .5 halves it. The picture is
redrawn to the new scale centred on the
cursor— so always move the cursor to the
middle of the point you want magnified. If
any part of a line goes off the screen then it is
not drawn at all except on the Acorns. The
Acorns draw the part of the line that crosses
the screen.

Zooming to a scale of 0 does nothing, while
a scale of one redraws the picture centred on
the cursor, but to the same scale. Entering a
negative number produces a mirror image of
the picture. The changes of scale are cumula-
tive so a magnification of 2 followed by
another 2 increases the magnification to 4.

Note that if you enter a very small scale on
the Dragon and Tandy, say .0001, this is
converted to 10E-4 but appears on the screen
as 104. This is a limitation of the routine that
draws the numbers on the screen and doesn't
affect the way the picture is drawn.

10 DEF FN a(x) = (x/256) + 128
20 DEF FN b(x)= (x/256)+85
30 BORDER 0: INK 7: PAPER 0: CLS
50 LET In =1: LET sc =1: LET 1=600
60 LET f=0: LET x=0: LET y=0: LET

zoom =1
70 DIM a(I +1): DIM b(I): DIM c(I): DIM d(I)
80 LET a(1) = x: LET b(1) = y
90 LET c(1) =x: LET d(1) = y

you can look through the window

100 LET i$=1NKEY$
110 IF 1$="1" AND f AND 1> In THEN BEEP

0.1,0: PLOT FN a(a(In)),FN b(b(In)): DRAW
FN a(c(In)) — PEEK 23677,FN
b(d(In)) — PEEK 23678: LET In = In + 1: LET
a(In) = x: LET b(In) = y: LET c(In) = x: LET
d(In)=y: LET f = 0

120 IF i$="c" THEN LET x=0: LET y=0:
LET c(In)=x: LET d(In)=y

130 IF i$="m" THEN LET a(In)=x: LET
b(In)=y

140 IF i$="1" THEN GOSUB 420
150 IF i$="o" THEN GOSUB 600
160 IF i$ ="d" THEN GOSUB 710
170 IF i$="z" THEN LET Iv= 0: GOSUB 840
180 LET sp = 256: IF CODE INKEY$ < =41

THEN LET sp =2048
190 IF INKEY$="8" OR INKEY$="(" AND

x> —32768 +sp THEN LET f=1: LET
x =x + sp: LET c(In) = c(In) +sp

200 IF INKEY$="5" OR INKEY$="%" AND
x <32768 —sp THEN LET f= —1: LET
x=x—sp: LET c(In) =c(In) —sp

210 IF INKEY$ = "7" OR INKEY$="'" AND
y> —22400 +sp THEN LET f= —1: LET
y= y +sp: LET d(In) = d(In) +sp

220 IF INKEY$="6" OR INKEY$="&" AND
y<22400—sp THEN LET f=1: LET
y=y—sp: LET d(In) = d(In) —sp

230 GOSUB 250
240 GOTO 100
250 PRINT AT 1,2; INVERSE 1;

"IIISCALE :";: LET a$=STR$ sc: IF LEN
a$ > 4 THEN LET a$ = a$(TO 4)

255 PRINT INVERSE 1;a$;AT 1,18;
"0 LINES:";In —1

280 LET bx=FN a(a(In)): LET by= FN
b(b(In)): LET ex= FN a(c(In)): LET ey= FN
b(d(In))

290 PLOT bx,by: PLOT ex,ey
310 PLOT OVER 1;bx,by: PLOT OVER 1;ex,ey
320 RETURN
420 CLS
430 INPUT "ENTER FILENAME ❑ "4
435 IF f$="" THEN GOTO 430
440 LET In =1: LET zoom =1: LET sc =1

and see a book on the table

460 LOAD f$ DATA a()
470 LOAD f$ DATA b()
480 LOAD f$ DATA c()
485 LOAD f$ DATA d()
490 LET In = a(601)
590 RETURN
600 CLS
610 INPUT "ENTER FILENAME ❑ ";f$
615 IF f$="" THEN GOTO 610
620 LET Iv=1: GOSUB 840
625 LET a(601) =In
630 SAVE f$ DATA a()
640 SAVE f$ DATA b()
650 SAVE f$ DATA c()
660 SAVE f$ DATA d()
700 RETURN
710 INPUT "ENTER NUMBER OF LINES TO

DELETE"'k
750 IF k=0 OR In —k< =0 THEN GOTO

830
755 LET In =In —k
760 LET x=a(In): LET y= b(In)
780 CLS
790 LET c(In)=x: LET d(In)=y
800 IF In =1 THEN GOTO 830
810 IF ABS (c(In —1)) <32767 AND ABS

(d(In —1)) <22399 THEN LET x=0: LET
y=0

820 LET lv = 2: GOSUB 840
830 RETURN
840 IF In =0 THEN RETURN
850 IF Iv=1 THEN LET zoom =1/sc: CLS :

GOTO 920
860 IF lv = 2 THEN LET zoom =1: GOTO 920
870 BEEP .1,10: INPUT "ENTER ZOOM SCALE

";zoom
890 IF zoom =0 THEN GOTO 1020
910 CLS
920 FOR u =1 TO In-1
930 LET a(u)= (a(u)—x)*zoom: LET

b(u) = (b(u) —y)*zoom
940 LET c(u)=(c(u)—x) * zoom: LET

d(u)=(d(u)—y)*zoom
950 IF ABS (a(u)) <32768 AND ABS

(b(u)) <22400 AND ABS (c(u)) <32768
AND ABS (d(u)) <22400 THEN PLOT FN

a(a(u)),FN b(b(u)): DRAW FN
a(c(u)) — PEEK 23677,FN b(d(u)) — PEEK
23678

960 NEXT u
970 LET a(u)=(a(u)—x)*zoom: LET

b(u) = (b(u) —y)*zoom
980 LET c(u)=(c(u)—x)*zoom: LET

d(u) = (d(u) —y)*zoom
990 LET x = On): LET y= On)
1000 IF ABS (a(ln)) >32767 OR ABS

(b(In)) >22399 THEN LET a(In) = x: LET
b(In)=y

1010 LET sc=sc*zoom
1030 RETURN

If you have a Microdrive make these changes
to the program:

437 INPUT "ENTER DRIVE NUMBER ";dry
460 LOAD *"m";drv;"1"+f$ DATA a()
470 LOAD *"m";drv;"2"+f$ DATA b()
480 LOAD *"m";dry;"3"+f$ DATA c()
485 LOAD *"m";dry;"4"+f$ DATA d()
617 INPUT "ENTER DRIVE NUMBER ";dry
630 SAVE *"m";dry;"1"+f$ DATA a()
640 SAVE *"m";drv;"2"+f$ DATA b()
650 SAVE *"m";dry;"3"+f$ DATA c()
660 SAVE *"m";dry;"4"+f$ DATA d()

KIK
You'll need a Simons' Basic cartridge, or
INPUT's own machine code hi-res utility
(starting on page 748), for this program.

10 PRINT "Ej ":COLOUR 6,6:SC$=
"111":SC=1:LN$=SC$

20 HIRES 0,15:GOSUB 790
30 LN%= 0:L%= 600
40 X%=0:Y%=0:ZO =1
50 DIM BX(L%),BY(L%),EX(L%),EY(L%)
60 BX(0)=X%:BY(0)=Y%
70 EX(0)=X%:EY(0)=Y%
80 GOSUB 110:GOTO 80
90 LINE 160+ BX(LN%),100 + BY(LN%),

160+ EX(LN%),100 + EY(LN%),2
100 RETURN
110 DL=0:A$=":GETAVFA$="L"AND

F%ANDL%> LN%THEN GOSUB 260
120 GOSUB 90
130 IFA$ ="C"THENX%=0:Y%=-- 0:

EX(LN%) =X%:EY(LN%) =Y%
140 IFA$="M"THENPLOT160+ BX(LN%),

100 + BY(LN%),0:BX(LN%)=X%:

BY(LN%) =Y%
150 IFA$="I"THEN GOSUB 640
160 IFA$="0"THEN GOSUB 570
170 IFA$ ="D"THEN GOSUB 460
180 IFA$ ="Z"THENS%= 0:GOSUB 290
190 SP%=1:IFPEEK(653)=1THEN

SP%=8
200 IFPEEK(197)=50ANDX%+SP%<159

THENF%= - 1:X% = X% + SP%:
EX(LN%) = EX(LN%) + SP%

210IFPEEK(197) = 45ANDX%- SP% > -159
THENF%= - 1 :X% = X% - SP%:
EX(LN%) = EX(LN%) - SP%

220 IFPEEK(197) =46ANDY%-SP%> -99
THENF%= - 1:Y% = Y%- SP%:
EY(LN%) = EY(LN%) - SP%

230 IFPEEK(197) =55ANDY%+ SP%
< 99TH EN F% = - 1:Y% = Y%+ SP%:
EY(LN%) = EY(LN%) +SP%

240 GOSUB 90
250 RETURN
260 LINE 160+ BX(LN%),100 + BY(LN%),

160 + EX(LN%),I 00 + EY(LN%),I :
LN%= LN%+ 1:GOSUB 790

270 BX(LN%)=X%:BY(LN%)=Y%:
EX(LN%) =X%:EY(LN%) =Y%:F%=0

280 RETURN
290 IFLN%= 0ANDZZ = 0THEN450
300 ZZ = 0:IFS%= ITH ENZO =1 /SC:

GOT0340
310 IFS% = 2THENZO =1:GOT0340
320 NRM:INPUT"DENTER THE ZOOM

SCALEPJ";D$
330 ZO=VAL(D$):IFZO=0THEN

CSET(2):GOT0440

340 HIRES 0,15
350 FORU=0TO(LN%-1)
360 BX(U)=(BX(U)-X%)70:

BY(U) = (BY(U)-Y%) * ZO:
BX=BX(U):BY=BY(U)

370 EX(U)=(EX(U)-X%) * ZO:
EY(U) = (EY(U)-Y%)*ZO:
EX= EX(U):EY= EY(U)

380 GOSUB 710
390 NEXTU
400 BX(U)= (BX(U)-X%)*ZO:

BY(U) = (BY(U) -Y%)*ZO
410 EX(U)=(EX(U)-X%)70:

EY(U)= (EY(U)-Y%)70
420 X%=EX(LN%)
430 Y%= EY(LN%)
440 SC = SC * ZO:GOSUB 790
450 RETURN
460 NRM:INPUT"DHOW MANY LINES DO

YOU WANT DELETED";D$
470 K%=VAL(D$)
480 IFK%=0ORLN%-K%<0THEN

CSET(2):GOT0560
490 LN$=STR$(LN%):LN%=LN%-K%
500 X%= BX(LN%):Y%= BY(LN%)
510 HIRES 0,15:GOSUB 790
520 EX(LN%)=X%:EY(LN%)=Y%
530 IFLN%= 0THENZZ=1:GOT0550
540 IFABS(EX(LN%-1))<160ANDABS

(EY(LN%-1))<100THENX%=0:Y%= 0
550 S%= 2:GOSUB 290
560 RETURN
570 NRM:INPUT "C7 ENTER OUTPUT

FILENAMEN";F$
580 S%=1:GOSUB 290
590 NRM:CM$=",":0PEN1,1,1,F$
600 PRINT#1,LN%:FORU=0TOLN%
610 PRINT# 1,BX(U);CM$;BY(U);CM$;EX(U);

CM$;EY(U)
620 NEXTU:CLOSE1:HIRES 0,15:

S%=2:GOSUB 290
630 RETURN
640 NRM:INPUT"OENTER INPUT

FILENAMEN";F$
650 LN%=0:S%=1:GOSUB 290
660 NRM:OPEN1,1,0,F$
670 INPUT#1,LN%:FORU=0TOLN%
680 INPUT#1,BX(U),BY(U),EX(U),EY(U):

NEXTU
690 CLOSE1:X%= EX(LN%):Y%= EY(LN%):

HIRES 0,15:GOSUB 790:S%=2:
GOSUB 290

700 RETURN
710 SX= (EX— BX)/100:SY=

(EY— BY)/100
720 FORQ = 0T0100
730 IFABS(BX)>1550RABS(BY)>95THEN

BX= BX+SX:BY= BY + SY:NEXTQ:
GOT0780

740 SX = (EX — BX)/100:SY = (EY— BY)/100
750 FORQ = 0T0100
760 IFABS(EX)>1550RABS(EY)>95THEN

EX= EX— SX:EY= EY— SY:NEXTQ
770 LINE 160 + BX,100 + BY,160 + EX,

100+ EY,1
780 RETURN

790 TEXT 264,0,LN$,0,1,8:LN$=STR$(LN%):
TEXT 160,0,"NUM OF LINES:
"+LN$,1,1,8

800 TEXT 48,0,SC$,0,1,8:SC$=STR$(1NT
(SC*1000)/1000):
TEXT 0,0,"SCALE:"+SC$,1,1,8

810 RETURN

To use the program with a disk drive change
Lines 590 and 660 to:

590 NRM: CM$=",":0PEN1,8,1,F$
660 NRM:0PEN1,8,0,F$

LI
10 *FX212,216
20 ON ERROR GOTO 1260
30 MODE4:VDU 23,1,0;0;0;0;:

VDU29,640;512;
40 L%=0:scale=1:N%=600
50 X%= 0:Y%= 0:zoom =1
60 DIM begx(N%),begy(N%),

endx(N%),endy(N%)
70 begx(0)=X%:begy(0)=Y%
80 endx(0) =X%:endy(0) =Y%
90 *FX4,1
95 PLOT 69,0,0
100 REPEAT
110 PROCkey
120 UNTIL FALSE
130 END
140 DEF PROCdraw
150 PRINTTAB(5,1)"Scale:";scale;

TAB(18);"No of lines:";L%
160 GCOL 4,0
170 MOVE begx(L%),begy(L%):

DRAW endx(L%),endy(L%)

Game tips
When you use this program as a game, the
difficult part is to make sure that the
hidden message or treasure doesn't appear
as an obvious blob in the picture.

The trick is to draw in lots of detail at
different magnifications, so your oppo-
nent has to search for the correct area of
the picture as well as the correct magnific-
ation. Don't hide the treasure too well,
though, as it is easy to become hopelessly
lost at higher magnifications.

If you want to score the game, simply
count the number of moves and changes of
scale the player makes. The one with the
smallest number is the winner.

175 PLOT 69,begx(L%),begy(L%)
180 ENDPROC
190 DEF PROCkey
200 IF INKEY(—87) = —1 AND F% AND

N%> L% VDU7:GCOL0,1:MOVE begx(L%),
begy(L%):DRAW endx(L%),endy(L%):L% =
L%+1:begx(L%)=X%:begy(L%)= Y%:
endx(L%) = X%:endy(L%) = Y%:F% -= 0

210 PROCdraw
220 IF INKEY(—83) VDU7:

X%= 0:Y%=0:endx(L%) = X%:
endy(L%) =Y%

230 IF INKEY(—102) VDU7:
begx(L%)=X%:begy(L%)=Y%

240 IF INKEY(—38) PROCinput
250 IF INKEY(—55) PROCoutput
260 IF INKEY(—51) PROCdelete
270 IF INKEY(—98) PROCzoom(0)
280 IF INKEY(—106) sp%=24 ELSE sp%= 4
290 IF INKEY(—122) F%= —1:

X%= X%+sp%:endx(L%) =
endx(L%) +sp%

300 IF INKEY(—26) F%= —1:
X%=X%—sp%:endx(L%)=
endx(L%) —sp%

310 IF INKEY(—42) F%= —1:
Y%=Y%—sp%:endy(L%)=
endy(L%) —sp%

320 IF INKEY(— 58) F%= —1:
Y%=Y%+sp%:endy(L%)=
endy(L%) +sp%

330 PROCdraw
340 ENDPROC
350 DEF PROCzoom(s%)
360 IF L%=0 GOTO 660
370 IF s%=1 THEN zoom =1 /scale:

CLS:GOTO 540
380 IF s%=2 THEN zoom =1:GOTO 540

390 VDU7
400 VDU30:PRINT'SPC(39):VDU30
410 PRINT'Enter the zoom scale El";
420 D$=""
430 REPEAT
440 FOR C%=0 TO100:NEXT:*FX15,1
450 zoom =GET
460 IF zoom =127 AND LEN(D$) = 0

VDU7:GOTO 440
470 IF zoom =127 D$=LEFT$

(D$,LEN(D$)-1):GOTO 500
480 IF LEN(D$) =19 VDU7:GOTO 440
485 IF (zoom <46 OR zoom >57) AND

zoom< >13 AND zoom< >69
THEN 450

490 D$=D$+CHR$(zoom)
500 VDU zoom
510 UNTIL zoom =13
520 zoom= EVAL(D$)
530 IF zoom= 0 VDU30:PRINT'

SPC(39):GOTO 650
540 CLS:GCOL0,1
550 FOR U%=0 TO L%-1
560 begx(U%) = (begx(U%)—X%)*zoom:begy

(U%) = (begy(U%) —Y%)*zoom
570 endx(U%) = (endx(U%)—X%)*zoom:

endy(U%) = (endy(U%)—Y%)*zoom
580 IF ABS(begx(U%)) <32768 AND ABS

(begy(U%)) <32768 AND ABS(endx(U%))
<32768 AND ABS(endx(U%)) <32768
MOVE begx(U%),begy(U%):DRAW endx
(U%),endy(U%)

590 NEXT
600 begx(U%) = (begx(U%) —X%)*zoom:begy

(U%) = (begy(U%) —Y%)*zoom
610 endx(U%) = (endx(U%) — X%)*zoom:endy

(U%) = (endy(U%) —Y%)*zoom
620 X%=endx(L%):Y%=endy(L%)
630 IF ABS(begx(L%)) >32767 OR

ABS(begy(L%)) >32767 THEN
begx(L%) = X%:begy(L%) =Y%

640 scale =scale*zoom
650 VDU7
660 ENDPROC
670 DEF PROCdelete
680 VDU7
690 VDU30:PRINT'SPC(39):VDU30
700 PRINT"`How many lines do you want

deleted 111 ";
710 D$=""
720 REPEAT
730 FOR C%=0 TO100:NEXT:*FX15,1
740 K%= GET
750 IF K%=13 GOTO 810
760 IF K%<48 OR K%>57 AND

(K%< >127 OR LEN(D$) =0)
VDU7:GOTO 730

770 IF K%=127 D$=LEFT$(D$,
LEN(D$)-1):GOTO 800

780 IF LEN(D$) =3 VDU7:GOTO 730
790 D$= D$+ CHR$(K%)

800 VDU K%
810 UNTIL K%=13
820 K%=VAL(D$)
830 IF K%=0 OR L%— K%<0 GOTO

910
840 L%= L%— K%
850 X%=begx(L%):Y%=begy(L%)
860 CLS
870 endx(L%) = X%:endy(L%) =Y%
880 IF L%=0 GOTO 910
890 IF ABS(endx(L%-1)) <640 AND

ABS(endy(L%-1)) <512 THEN
X%=0:Y%= 0

900 PROCzoom(2)
910 VDU 30:PRINT'SPC(39)
920 ENDPROC
930 DEF PROCinput
940 VDU30:PRINT'SPC(39):VDU30
950 VDU7:*FX15,1
960 INPUT— Enter the input

filename III " f$:CLS
970 L%= 0:GCOL0,0
980 PROCzoom(1)
990 GCOL4,0
1000 D%=OPENUP f$
1010 INPUT # D%,L%
1020 FOR U%=0 TO L%-1
1030 INPUT # D%,begx(U%),begy(U%),

endx(U%),endy(U%)
1040 IF ABS(begx(U%)) <32768 AND

ABS(begy(U%)) <32768 AND
ABS(endx(U%)) <32768 AND
ABS(endy(U%)) <32768 MOVE
begx(U%),begy(U%): DRAW
endx(U%),endy(U%)

1050 NEXT
1060 INPUT # D%,begx(L%),begy

(L%),endx(L%),endy(L%)
1070 X%=endx(L%):Y%=endy(L%)
1080 CLOSE # 0
1090 VDU7
1100 ENDPROC
1110 DEF PROCoutput
1120 VDU30:PRINT'SPC(39):VDU30
1130 VDU7:*FX15,1
1140 INPUT"Inter the output

filename El "f$
1150 PROCzoom(1)
1160 VDU30:PRINT'SPC(39):

PRINTTAB(0,1);
1170 D%= OPENOUT f$
1180 PRINT # D%,L%
1190 FOR U%=0 TO L%
1200 PRINT # D%,begx(U%),begy

(U%),endx(U%),endy(U%)
1210 NEXT
1220 CLOSE # 0
1230 VDU30:PRINT'SPC(39)
1240 VDU7
1250 ENDPROC
1260 MODE7

1270 *FX4,0
1280 REPORT:PRINT" ❑ at
1290 END

This program will RUN on the Tandy if you
change the 223 in Line 10 to 247.

10 PMODE4,1:COLOR 0,1:PCLS:
SCREEN1,0:V = 223

20 DIM NU$(10):FOR 1=0 TO 10:
READ NU$(I):NEXT

30 DEF FNA(X)= (X/256)+128
40 DEF FNB(X)= (X/256) + 96
50 LN =0:SC=1:L=600
60 X =0:Y = 0:ZOOM =1
70 DIM BX(L),BY(L),EX(L),EY(L)
80 BX(0)=X:BY(0)=Y
90 EX(0)=X:EY(0)=Y
100 1$ =1NKEY$
110 IF 1$="L" AND F AND L>LN THEN

LINE(FNA(BX(LN)),FNB(BY(LN))) — (FNA
(EX(LN)),FNB(EY(LN))),
PSET:LN = LN +1:BX(LN)=X:BY(LN)=Y:
EX(LN) =X:EY(LN) =Y:F =0

120 IF 1$ ="C" THEN X =0:Y =0:
EX(LN)=X:EY(LN)=Y

130 IF 1$ ="M" THEN BX(LN) = X:
BY(LN)=Y

140 IF 1$ = "I" GOSUB 420
150 IF I$="0" GOSUB 600
160 IF 1$ ="D" GOSUB 710
170 IF 1$ ="Z" THEN LV=0:GOSUB 840
180 IF PEEK(339) =191 THEN SP = 2048

ELSE SP= 256
190 IF PEEK(343) =V AND X> —32768+SP

THEN F= —1:X=X—SP:EX(LN)=
EX(LN) — SP

200 IF PEEK(344) =V AND X <32768 —SP
THEN F= —1:X = X + SP:EX(LN) =
EX(LN) + SP

210 IF PEEK(341)=V AND Y> —24576
+ SP THEN F= — 1:Y = Y — SP:
EY(LN) = EY(LN) —SP

220 IF PEEK(342) =V AND Y < 24576 —SP
THEN F= — 1:Y =Y + SP:EY(LN)=
EY(LN) + SP

230 GOSUB 250
240 GOTO 100
250 SS$=STR$(SC)
260 DRAW "BM0,183":GOSUB 330
270 SS$=STR$(LN):DRAW "BM200,

183":GOSUB 330
280 BX=FNA(BX(LN)):BY= FNB(BY(LN)):

EX= FNA(EX(LN)):EY= FNB(EY(LN))
290 PSET(BX,BY):PSET(EX,EY)
300 FOR D =1 TO 50:NEXTD
310 PRESET(BX,BY):PRESET(EX,EY)
320 RETURN
330 FOR 1=1 TO LEN(SS$)

340 DI = ASC(MID$(SS$,I,1)) —48
350 IF DI= —2 THEN DI=10
360 IF DI <0 OR DI>10 THEN 380
370 DRAW "C1;XNU$(8);C0;BL8"+

NU$(D1) + "BR2"
380 NEXT I
390 RETURN
400 DATA R6D8L6U8BR8,BR6ND8BR2,

R6D4L6D4R6BR2BU8,
R6D4NL3D4NL6BR2BU8,D4R6D4U8BR2,
NR6D4R6D4L6BE8

410 DATA D8R6U4L6U4BR8,R6ND8BR2,
R6D8L6U8D4R6U4BR2,D4R6D4U8L6BR8,
BR3BD8NR1BR5BU8

420 CLS
430 PRINT@256,"";:LINE INPUT "ENTER

LOAD FILENAME> ❑ ";F$
440 LN = 0:ZOOM =1:SC=1
450 PCLS:SCREEN1,0
460 OPEN "1",# —1,F$
470 INPUT # —1,N$
480 LN=VAL(N$)
490 FOR U=0 TO LN-1
500 INPUT # —1,BX$,BY$,EX$,EY$
510 BX(U)=VAL(BX$):BY(U)=VAL(BY$):

EX(U)=VAL(EX$):EY(U)=VAL(EY$)
520 IF ABS(BX(U)) < 32768 AND

ABS(BY(U)) <24576 AND
ABS(EX(U)) <32768 AND
ABS(EY(U)) <24576 THEN LINE
(FNA(BX(U)), FNB(BY(U)))—
(FNA(EX(U)),FNB(EY(U))),
PSET

530 NEXT
540 INPUT # —1,BX$,BY$,EX$,EY$
550 BX(U) = VAL(BX$):BY(U) =VAL

(BY$):EX(U) =VAL(EX$):
EY(U)=VAL(EY$)

560 X= EX(LN):Y= EY(LN)
570•CLOSE# —1
580 SCREEN1,0
590 RETURN
500 CLS
610 PRINT@256,"";:LINE INPUT "ENTER

SAVE FILENAME> ❑ ";F$
620 LV =1:GOSUB 840
630 OPEN "0",# —1,F$
640 PRINT# —1,STR$(LN)
550 FOR U=0 TO LN
560 PRINT# —1,STR$(BX(U)),

STR$(BY(U)),STR$(EX(U)),
STR$(EY(U))

570 NEXT
380 CLOSE# —1
590 SCREEN1,0
700 RETURN
710 CLS
720 PRINT@256,"HOW MANY LINES DO

YOU WANT TOEI ❑ ❑ DELETE ";
730 INPUT K
740 SCREEN1,0

750 IF K=0 OR LN — K< 0 THEN 830
760 LN=LN—K
770 X= BX(LN):Y= BY(LN)
780 PCLS
790 EX(LN) =X:EY(LN) =Y
800 IF LN=0 THEN 830
810 IF ABS(EX(LN —1)) <32767 AND

ABS(EY(LN —1)) <24576 THEN
X =0:Y = 0

820 LV=2:GOSUB 840
830 SCREEN1,0:RETURN
840 IF LN=0 THEN RETURN
850 IF LV=1 THEN ZOOM =1/SC:

PCLS:GOTO 920
860 IF LV= 2 THEN ZOOM =1:GOTO 920
870 CLS
880 PRINT@256,"ENTER THE ZOOM

SCALE ❑ ";
890 INPUT ZOOM
900 IF ZOOM = 0 THEN 1020
910 PCLS:SCREEN1,0
920 FOR U=0 TO LN-1
930 BX(U)=(BX(U)—X)*ZOOM:

BY(U)=(BY(U)—Y)*ZOOM
940 EX(U) = (EX(U) —X)*ZOOM:

EY(U)=(EY(U)—Y)*ZOOM
950 IF ABS(BX(U)) <32768 AND ABS

(BY(U)) <24576 AND ABS(EX(U))
<32768 AND ABS(EY(U)) <24576 THEN
LINE(FNA(BX(U)),
FNB(BY(U))) — (FNA(EX(U)),
FNB(EY(U))),PSET

960 NEXT
970 BX(U) = (BX(U) —X)*ZOOM:

BY(U) = (BY(U)—Y)*ZOOM
980 EX(U)=(EX(U)—X)*ZOOM:

EY(U) = (EY(U)—Y)*ZOOM
990 X= EX(LN):Y= EY(LN)
1000 IF ABS(BX(LN)) > 32767 OR ABS

(BY(LN))> 24576 THEN BX(LN) =X:
BY(LN) = Y

1010 SC =SC*ZOOM
1020 SCREEN1,0
1030 RETURN

The Dragon program will work with a
Dragon Data disk drive if you make these
changes:

Delete Line 460 and add

470 FREAD F$,FROM0;N$
500 FREADF$;BX$,BY$,EX$,EY$
540 FREADF$;BX$,BY$,EX$,EY$
570 CLOSE
630 CREATE F$
640 FWRITEF$;STR$(LN)
660 FWRITEF$;STR$(BX(U)),":",

STR$(BY(U)),":",STR$(EX(U)),
":",STR$(EY(U))

680 CLOSE

One small step for INPUT ... You'll
need all your skill and judgement to
manoeuvre the Lunar Lander safely
to the landing pad, in this complete
arcade-type game

Games Programming need not involve huge
complicated programs to produce a self-
contained game* Here is a version of the
popular Lunar Lander program that offers
high resolution graphics and full control over
the craft*

The game is complete and playable as it
stands, but there are many possibilities for
you to customize it to suit your own pre-
ferences* You may well want to add an
`another go?' routine to save having to RUN
the program after each descent* You may wish
to alter the graphics and the sound too—it's
up to you*

CONTROLS
Spectrum: the cursor ,keys-5, 7 and 8*
Commodore: the cursor keys for left and
right, and the Commodore key for thrust.
Acorn: Z for left, X for right and space for
thrust.
Dragon/Tandy: arrow control keys.

10 B0RDER 1: INK 7: PAPER O . CLS BRIGHT
1

20 F0R N=1 T0 50: PL0T RND*255.
(RND*135)+ 40 NEXT N

70 PLOT 0,0: FOR N=1 TO 16: READ GX,GY:
DRAW GX,GY: NEXT N

80 DATA 18,30,18, —15,18,-8,18,8,16,20,
16,5,13, —20,16, —8,18, —4,15,0,10,10,
20,25,10, — 20,10, —10,20, — 5,18,20

90 PRINT AT 0,4; INK 6; PAPER
2;" FUEL :";AT 0,18;" VELOCITY :"

110 LET LX = RND*240+10: LET LY=
160— (15+ (RND*10)): LET XV= RND.15:
LET YV = 0: LET F=246

115 GOSUB 4000
120 GOSUB 1000: GOSUB 2000: GOSUB

3000
130 IF LY>20 THEN GOTO 120
135 PAUSE 50
140 CLS : IF LX<154 OR LX>164 OR ABS

YV>4 THEN GOTO 160
150 PRINT "CONGRATULATIONS A

SUCCESSFULD 0 ❑ CI LANDING !!"*
RESTORE 5000: FOR N=1 TO 14: READ
A,B: BEEP A,B: NEXT N: GOTO 170

160 PRINT AT 10,7; FLASH 1; INK 2; PAPER
7;" !!!! CRASHED !!!! ": FOR T=1 TO 50:
BORDER RND*7: BEEP .01,RND*5: NEXT T

170 PAUSE 400
180 STOP
1000 IF LY <160 THEN GOSUB 4000
1010 LET LX= LX+ XV: LET LY= LY + YV: IF

LY < 300 THEN BEEP .02,LY/5
1030 IF LX<5 THEN LET LX=LX+245
1035 IF LX > 250 THEN LET LX= LX —242
1036 IF LY >160 THEN RETURN

1037 IF LY <10 THEN RETURN
1040 GOSUB 4000
1050 RETURN
2000 LET YV =YV —.5: IF F<1 THEN

RETURN
2010 IF 1NKEY$= "7" AND F>3 THEN LET

YV=YV+1: LET F= F-3: RETURN
2020 IF INKEY$="5" THEN LET

XV= XV —.5: LET F = F —1: RETURN
2030 IF INKEY$="8" THEN LET

XV= XV +*5: LET F = F —1: RETURN
2040 RETURN
3000 PRINT AT 0,10;" "+STR$ F+" ";AT

0,28;" "+STR$ INT YV+" "
3010 RETURN
4000 OVER 1: PLOT LX,LY: DRAW —5,-10:

DRAW 5,2: DRAW 5,-2: DRAW —4,10
4010 OVER 0: RETURN
5000 DATA *2,4,.2,7,.2,5,.2,12,*2,0,*2,4,.2,4,

1111
10 HIRES 1,0:MULTI 7,4,4:COLOUR 7,0:

POKE 54296,15:POKE 54277,190:
POKE 54278,248

15 POKE 54276,0
70 FOR Z=20 TO 160 STEP 20:Y=

179— RND(1)*40:LINE Z-20,179,
Z-10,Y,3

72 FOR ZZ = 1 TO 3:PLOT RND(1)*160,
RND(1)150,ZZ:NEXT ZZ

74 LINE Z-10,Y,Z,179,3:NEXT Z:
PAINT 0,199,1:TEXT 64,192,

ISI",2,1,8
76 LINE 0,199,159,199,2

A COMPLETE GAME
LUNAR GRAPHICS

FUEL GAUGE
SPEED GAUGE

LANDING CONTROL

CUSTOMIZING THE PROGRAM
SOUND EFFECTS

CRASHES
SUCCESSFUL PROGRAMS

THE LANDER

110 LX=RND(1)*248 . LY= 15+ RND
(1)1 0 XV = RND(1) -15 - 8:YV = 0
F=246

115 G0SUB 1040
120 G0SUB 1010:G0SUB 2000:MULTI

7,RND(1)*2+ 4,RND(1) * 8 +1
130 IF LY< 192 THEN 120
140 IF LX<72 0R LX>88 0R YV>4 THEN

160
150 PRINT "Dimpja

C0NGRATULATI0NS A SUCCESSFUL
LANDING I -

155 P0KE 54276,33:F0R Z=1 T0 255:
P0KE 54273,Z:P0KE54273,255-Z:
NEXT Z:G0T0 170

160 PRINT"EA RAD LANDING.
P0KE 54276.129

163 F0R Z=1 T0 100 . C0L0UR 7.RND
(1)'2:P0KE 54273.Z

165 F0R ZZ =1 T0 10:NEXT ZZ,Z
170 P0KE 54276.0:NRM:P0KE 198.0:END
1010 LX=LX+XV:LY=LY+YV:P0KE

54276.17:S=255- (255ANDLY):
P0KE 54273.S

1020 IF LY <13 THEN RETURN
1030 IF LX< 0 THEN LX=151
1035 IF LX>151 THEN LX= 0
1040 TEXT LX,LY. -

G0SUB 3000
1050 TEXT LX,LY, - 1011 - ,4,1,8.

P0KE 54276.16:RETURN
2000 YV= YV + .5:IF LY <13 THEN RETURN

2010 GET K$:IF PEEK(653)= 2 AND F>3
THEN YV=YV -1.F= F-3 RETURN

2020 IF K$=":1g - THEN XV= XV -.5 .
F=F-1:RETURN

2030 IF K$="N" THEN XV = XV + 5 .
 F= F-1

2040 RETURN
3000 TEXT 1,1, - FUEL "+STR$(F),1.1,8
3010 V -=2•YV:IF ABS(V) >122 THEN

V = 122*SGN(V)
3020 TEXT 75.1,"SPEED: - +STR$(V).1.1.8
3021 TEXT 41,1,STR$(F),0.1.8
3022 TEXT 123,1,STR$(V).0,1,8
3030 RETURN

10 M0DE1
20 GC0L0,3
50 VDU 23,255,24,60.90,126,126.90,129.129
70 M0VE0,0 F0R X=80 T0 1280

STEP80:READ A DRAWX,A*32 NEXT
80 DATA 6,2,1,3.8,9.4.2.1.0,0.2,9.

4.1,7.3
90 PRINTTAB(0.1)"FUEL-

"SPEED "
110 LX=RND(1192):LY=RND

(200) +690 . XV= RND(15) -8:YV = 0:
F = 990:M0VEX,LY:VDU5.255,4

115 M0VE200.960:M0VE200.992:PL0T85.
1200,960.PL0T85.1200.992

116 GC0L3.3
120 G0SUB 1000:G0SUB2000:G0SUB3000
130 IF LY> 32 THEN 120
140 CLS IF LX <800 0R LX >843 0R

YV< -8 THEN160
150 PRINTTAB(0.7)"A SUCCESSFUL

LANDING!! - :G0T0 170
160 PRINTTAB(0,7) - BAD CRASH"
170 F0R T=1 T0 4000:NEXT:*FX15,1
180 END
1000 IF LY <901 THEN M0VELX,LY:VDU

5.255.4
1010 LX = LX + XV LY = LY +YV.

S0UND1,-15,LY/4.1
1020 IF LY > 900 THEN RETURN
1030 IF LX< 0 0R LX> 1191 THEN

LX= -1191'(LX<O)
1040 M0VELX.LY:VDU5,255.4
2000 YV = YV -.5 . 1F
F<1 THEN RETURN
2010 IF INKEY(-99)
THEN YV=YV+1:

F= F-3
2020 IF INKEY(—98) THEN XV= XV — .5:

F=F-1
2030 IF INKEY(—67) THEN XV= XV+ .5:

F=F-1
2040 RETURN
3000 GCOL0,0:MOVEF +200,960:

DRAWF + 200,992:MOVEF +204,960:
DRAWF + 204,992

3010 V = YV*4:IF ABS(V) >500 THEN
V = 500*SGN(V)

3020 MOVE200,930:MOVE200,950:
PLOT85,1200,930:PLOT85,1200,950:
GCOL0,3:MOVEV + 700,930:
MOVEV + 700,950: PLOT85,700,930:
PLOT85,700,950:GCOL3,3

3030 RETURN

Tandy owners should change the 223s in
Lines 2010 to 2030 to 247.

10 PMODE4,1
20 SS= PEEK(186)*256:DIML(1),B(1)
30 FORK= 0T07:READA:POKEK*32 +

SS,A:NEXT
40 GET(0,0) — (7,7),L,G
50 DATA 24,60,90,126,126,90,129,129
60 PCLS:SCREEN1,1
70 DRAW"BM0,191":FORX = 0T0256

STEP16:READA:LINE — (X,A),PSET: N EXT:
PAINT(127,191)

80 DATA 151,173,177,165,146,120,167,174,
177,181,181,170,140,122,158,170,161

90 DRAW"BM1,1S8NRDNRDBDNRDRDL"
100 LINE(8,1) — (254,5),PSET,BF:

LINE(132,7)— (132,12),PSET
110 LX=RND(248)-1:LY=15+RND(10):

XV = RN D(15) — 8:YV= 0:F = 246
120 GOSUB1000:GOSUB2000:GOSUB3000
130 IF LY<174 THEN120
140 CLS:IF LX<144 OR LX>153

ORYV>4THEN160
150 PLAY"T1004AGFEGFE":PRINT@225,

"CONGRATULATIONS A SUCCESSFUL
111111111111LANDING !!":GOT0170

160 PLAY"T10002ADEFGBCDEFA":
PUT(LX,LY) — (LX+6,LY+7),L,PSET

170 FORG =1T04000:NEXT
180 END

1000 IFLY >12 THENPUT(LX,LY)—
(LX+7,LY+7),B,PSET

1010 LX= LX+ XV:LY= LY+YV:S = 255—
(255ANDLY):SOUNDS — (S = 0),1

1020 IF LY<13 THENRETURN
1030 IF LX < 0 OR LX > 247 THENLX=

— 247*(LX < 0)
1040 GET(LX,LY)— (LX+7,LY+7),B,G
1050 PUT(LX,LY)— (LX+7,LY+7),L,

PSET:RETURN
2000 YV=YV+.5:IF F<1 THENRETURN
2010 IFPEEK(341)=223 ANDF> 3

THENYV = YV — 1:F = F — 3:RETURN
2020 IFPEEK(343) =223 THENXV=

XV—.5:F=F-1:RETURN
2030 IFPEEK(344) =223 THENXV =XV +

.5:F = F — 1
2040 RETURN
3000 LINE(9+F,1)—(12+F,5),

PRESET,BF
3010 V = 2*YV:IFABS(V) >122 THEN

V =122*SGN(V)
3020 LINE(8,8) — (255,11),PRESET,BF:

LINE(132,8) — (132 + V,11),PSET,BF
3030 RETURN

I ANALOG'"= D DIGITAL
Ir 	RE Jju A SIGNAL

&IF ND TRACE
• ► G AND

T R. T&UND

Use your home computer to explore
the technology of digital sound
recording. A simple program will
enable your micro to analyze a
sound, or store a short section

Any sound comprises t o components—
frequency and volume—but the human ear
interprets these complex signals and is cap-
able of analyzing what are, literally vibrations
of the air around it, into recogni ble noises*

The trace mimics the original sound

In this form, sound is an analogue signal—
that is it varies continuously across a wide
range, with each variation being significant.
Unlike the human senses, computers are not
capable of recognizing this sort of change, and
instead need a digital signal. In this, each
variation is represented by a distinctly differ-
ent value, either a 1 or 0, a presence or
absence of a signal*

However, although the computer cannot
directly interpret a sound signal, it is a fairly
simple matter to turn the analogue waveform
of a piece of music, say, into digital inform-
ation for it to use.

In practical applications, this technique is
at the forefront of sound recording tech-
nology, which is moving from traditional tape
storage (of the analogue signal) to com-
puterized systems with disk storage. The
advantages are that once you have stored the
sound in digital form, it is much easier to
modify it or combine it with other sounds—
and once recorded, there is far less risk of
corruption due to the limitations of the
recording system.

MUSIC ON YOUR MICRO
Although such technology at present only
exists in a few expensive, highly sophisticated
systems, your home computer already has the
capability to explore its potential (unless you
are an Acorn user)* Every time that you LOAD
a program stored on cassette tape, you are
playing back a signal that has been stored
digitally* And, as you will know if you have
ever listened to a computer tape, the signal
does produce a sound of sorts, too—although
being digital, we cannot interpret it
meaningfully.

But with suitable programming (which
involves using machine code), you can use
this system to put music into your micro. All
you need to do is to feed an analogue signal
into the machine via the cassette socket, and
tell the computer how to interpret this—by
turning it into a digital signal* (Acorn com-
puters cannot do this without the aid of

additional hardware, which is why there are
no programs for the BBC or Electron).

Once the micro has done this, it can store
the numbers produced in memory—or even
display them, as the following sound analyzer
program demonstrates* This enables your
home micro to translate the analogue signal of
any recorded sound into numbers that can be
used to produce a graphic trace on the screen,
or stored in the memory, for later playback*

SOUND TRACE
The first option the program offers is to
produce a continuously changing graphic
display of music or sound played on a tape
recorder, connected to your micro. When the
recorder is switched on, a series of closely
spaced lines appear on the screen—the higher
the frequency the longer the line. Once the
screen is full, the trace will disappear and
restart from the left-hand side of the screen.

RECORDING SOUND
The second option allows you to record the
sound being fed into the cassette port—
although the amount you can store is very
limited for the reasons explained below. The
third option then allows you to play back the
recorded sound.

HOW IT WORKS
As the computer cannot directly interpret the
variations of an analogue sound signal, it is
programmed to assign digital values to these*
What it does is to sample the signal at the
cassette port at very rapid intervals—
thousands of times per second. The signal at
the cassette port can only be high or low,
represented by a 1 or a 0—there are no in-
between values as with an analogue signal.
But because the sampling is so quick, the rate
of change of the digital signals mimics the
analogue wave form*

Imagine, for example, that you feed in a
signal with a frequency of 256 Hz (the note
middle C), then the signal will peak 256 times
a second, and each peak lasts for 1/512
seconds. If you read the port 2,000 times a
second, then at each peak it will read for
approximately four samples. The signal will
then read low for four samples, and so on.
The variations in the digital values thus
mirror the wave form more or less
accurately—the more times you sample, the
better the computer is able to pick up subtle
changes.

The program uses the digital values that it
picks up in the two ways described above* To
display the waveform graphically, it plots a
chart showing how many high bits it finds in a
unit time—the overall frequency of that short

section of music* Again, the more frequent
the sampling, and the more frequent the
plotting, the more accurate the display*

Recording is handled in a similar way* The
computer counts up eight samples, then
stores these as one byte in memory. The
process is then repeated for the next eight
samples, which are placed in the next memory
location. It happens so quickly that this
requires a large amount of memory—on the
Spectrum, for example, the whole of the
available memory is required for about eight
seconds of sound*

Playback is just the reverse of this process,
with the stored information being directed
through the sound output to mimic the
vibrations that were present at the cassette
port during recording. But because of the
limitations of the equipment, the net result is
hardly hi-fi!

The Spectrum program comes in two parts—
a BASIC program to set up the routines and
the screen display, and a machine code rout-
ine to read the cassette port. Key in the first
part and save it (using SAVE "ANALYZER" LINE
5) then key in the second part which contains
the machine code in the form of DATA which is
POKEd into memory by Line 30. Line 80
contains a checksum to ensure that you have
entered the numbers correctly* RUN the
program to set up the machine code, then
SAVE "ANALYZER" CODE 65368, 109, immedi-
ately after the BASIC set-up program*

LOAD the BASIC program, which will
auto-start from Line 5 and load the machine
code data into high memory after resetting
RAMTOP. When loading is complete, you
will be presented with a menu which offers
three choices*

The first option will ask you to connect
your tape recorder ear socket to the ear socket

Setting the sound level
Your normal volume setting may not be
ideal for a good sound trace. If your
recorder has a PAUSE button, you can use
this to set the best level* Run the tape, then
PAUSE it while the computer is display-
ing the trace* You should get a flat trace,
showing an unchanging signal. Now turn
the tape recorder as high as it will go
before background noise starts to disrupt
the pattern*

on the Spectrum and then play some recorded
sound on the tape recorder. When you sub-
sequently press any key, a continuous frequ-
ency versus time graph is generated. To
return to the main menu press M, or press F
to freeze the display. If you select option F,
the display will be regenerated if you then
press any key.

If you select option two, you are prompted
to press a key to start recording and are
notified when the recording has been com-
pleted, before an automatic return to the main
menu. You can record any sound, but short
sharp sounds are best as, due to the limit-
ations of the Spectrum, the sound heard on
playback when option three is selected is
slower than its natural speed, with most of the
low frequency components filtered out—the
cassette port cannot distinguish between
frequencies below rather a high threshold
level. As a result, the recording sounds
slurred and deeper in tone.

Due to the huge amount of memory needed
to store what is, after all, a small amount of
poor quality sound, it's not really worth
trying to incorporate the recorded sound into
other programs. However, if you want to
experiment, it is possible to do this by
entering SAVE "sound" CODE 26000, 39360.
Then save the machine code to run the
program by entering SAVE "driver" CODE
65440,40.

When you want to use these in your own
program, reset RAMTOP by entering CLEAR
25999. Then load the sound data, followed by
the driver, by entering LOAD " "CODE :
LOAD" " CODE.

To hear the sound, enter RANDOMIZE USR
65440. Remember you will only have about
3K of memory left to write the rest of your
program in, which is not a lot unless you are a
very efficient machine code programmer.

THE BASIC SET-UP PROGRAM
5 CLEAR 25999:LOAD "" C0DE
10 GOSUB 200: GOSUB 500
20 IF INKEY$=`"' THEN G0TO 20
21 LET C= CODE INKEY$: IF C<49 OR

C > 51 THEN GOTO 20
22 GOSUB 30: GOSUB 200
24 IF C=49 THEN GOTO 100
25 IF C=50 THEN G0TO 600
26 IF C=51 THEN GOTO 700
30 FOR N =30 TO 50 STEP 3: BEEP .01,N:

NEXT N: RETURN
100 CLS : GOSUB 1000: PRINT AT 12,8;

BRIGHT 1;" D PRESS ANY KEY ❑ "
101 IF INKEY$="" THEN GOTO 101
102 BEEP .1,10
104 CLS : GOSUB 150: GOSUB 800
105 FOR X=0 TO 255: PL0T X,0: DRAW 0,

USR 65368
110 IF INKEY$="m" THEN GOSUB 30:

GOTO 10
111 IF INKEY$="f" THEN GOSUB 801:

GOTO 140
130 NEXT X: CLS : GOSUB 150: GOSUB 800:

G0TO 105
140 PRINT AT 0,0;"DI71171000000

❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑
❑❑❑❑❑❑❑❑ ": BEEP .1,40:
PAUSE 50: IF INKEY$="" THEN GOTO
140

141 BEEP .1,10: CLS : G0TO 104
150 PRINT AT 0,0; BRIGHT 1;

" ❑ 0 PRESS (M) TO RETURN TO
MENU ❑ ❑ ": RETURN

200 BORDER 5: PAPER 5: INK 0: CLS :
RETURN

500 PRINT AT 0,5; PAPER 2; INK
7;" ❑ ❑ SOUND ANALYZER MENU ❑ ❑ "

510 PRINT AT 5,7;"1. FREQ. BAR CHART";AT
7,7;"2. RECORD SOUND";AT 9,7;"3.
PLAYBACK SOUND"

520 PRINT AT 15,5; PAPER 4;" PRESS (1) (2)
OR (3) ": RETURN

600 PAUSE 20: GOSUB 1000: PRINT AT
13,0;"Press any key to START
RECORDING"

605 IF INKEY$="" THEN GOTO 605
606 BEEP .05,20: CLS : PRINT AT

10,10;"PLEASE WAIT": RANDOMIZE USR
65408: BEEP .1,30: CLS : PRINT AT 10,6;
BRIGHT 1;" D RECORDING
COMPLETE ❑ ": PAUSE 300: GOTO 10

700 RANDOMIZE USR 65440: GOTO 10
800 PRINT AT 1,0; PAPER 4;" ❑ ❑ PRESS (F)

T0 FREEZE PICTURED ": RETURN
801 PRINT AT 1,0; PAPER 4;" ❑ ❑ OPRESS

ANY KEY TO C0NTINUED ❑ ❑ ":
RETURN

1000 PRINT AT 4,2;"Connect ear socket of
tape";AT 6,0;"recorder to ear socket of
your";AT 8,0;"Spectrum. Then play some
music.": RETURN

THE MACHINE CODE ROUTINE
10 CLEAR 26000: RESTORE : LET t= 0: LET

x=65368
20 FOR n=1 TO 108
30 READ a: POKE x,a
40 LET t=t+a
50 LET x=x+1
60 NEXT n
70 IF t=12721 THEN PRINT "0K.": STOP
80 PRINT "DATA ERROR": STOP
90 DATA 14,64,175,8,17,208,7,219,254,230,

64,185,40,7,62,64,169,79,8,60,8,29,32,
239,175,178,40,5,30,255,21,24,230,8,203,
63,6,0,79,201

100 DATA 243,33,144,101,17,80,255,6,7,219,
254,203,119,32,2,203,254,203,62,16,244,

35,125,187,32,237,124,186,32,233,251,
201,243,33,144,101,17,80,255,6,8,203,70,
40,4

110 DATA 62,0,211,254,62,255,211,254,203,
14,16,240,35,125,187,32,233,124,186,32,
229,251,201

The Commodore program is only capable of
fulfilling the first option—it produces a
multi-coloured sound trace. It is possible to
produce a program which will allow you to
store a small amount of sound, but the
amount of programming required to output a
sound is beyond the scope of this article.

The machine code data for the routine
which reads the cassette port is contained
within the main program as DATA starting at
Line 1000. Once the program is entered, SAVE
to tape or disk before RUNning it. You must
then RUN the program. As the routine is so
short, the machine code data is stored in the
cassette buffer. Once the program is RUN, a
message INSERT TAPE & PRESS PLAY
THEN HIT RETURN appears on the
screen.

If you want to freeze the sound trace at a
particular point, press any key. The picture
on the screen will remain frozen until you
release the depressed key.

5 FOR Z=832 TO 852:READ X:POKE Z,X:
NEXT Z

8 PRINT "I:INSERT TAPE & PRESS PLAY
THEN HIT RETURN":INPUT A$

10 HIRES 0,1:COLOUR 1,1:MULTI 3,4,7
20 FOR Z=0 TO 159
30 SYS 832
40 IFPEEK(251) * 4 <200 THEN LINE Z,200,Z,

200— PEEK(251)*4,RND(1)*3 +1:GOTO 50
45 IF PEEK(197)< >64 THEN 45
50 NEXT Z:GOTO 10
1000 DATA 162,0,134,251,173,13,220,197,

252,240,6,133,252,230,251,240,3,232
1010 DATA 208,240,96

1M ill
The machine code data for the routine which
reads the cassette port is contained within the
main program as DATA starting at Line 1000.
A checksum is contained at the end of each
line to enable you to check that you have
entered the data correctly—when you run it
the line will throw up an error report if there
is a mistake. To use the program with the
Tandy, certain alterations have to be made. In
Line 1010, substitute 180 for 140 and 244 for
55. The latter numbers are printed in bold so
you can easily identify them. Checksum 1838
then becomes 2067. In Line 1020 make the
same substitutions and change the checksum

from 1618 to 1847. Also change USRO1 in
Line 420 to USR1 and similarly in Line 610
change USR02 to USR2.

Once the program is entered, SAVE to tape
or disk before RUNning it. You must then RUN
the program to POKE the machine code into
higher memory. Once the program is RUN,
the main menu will appear on the screen. If
there is a mistake in the DATA, the message
CHECK DATA IN LINE (relevant number)
will appear on the screen.

Press 1 for the first option* You will then be
asked to position the tape. Press play on the
recorder and ENTER I, when the sound trace
will automatically start. Press M to return to
the main menu or SH IFT I @ to freeze the
picture.

Press 2 for the second option (recorded
sound), and you will be given the same
instructions as for option 1. While the music
is being recorded, a coloured display will
appear on the screen. Once recording has
finished, the display will disappear and the
program returns to the main menu.

Press 3 to play back the music you have just
recorded. Unlike that on the Spectrum, music
recorded on the Dragon or Tandy will play
back at the same speed as the original.

If you want to use the recorded sound in
your own program, you can store it by
entering CSAVEM"MUSIC",1536,13823,1536
(add 1536 to these three values if you are using
a disk drive). To save the machine code which
permits the program to run, enter CSAVEM
"DRIVER", 31000, 31174, 31091. When you
want to use this, reset RAMTOP by entering
CLEAR 200, 30999 and use PCLEAR 8 to
protect the DATA. To load sound data, enter
CLOADM "MUSIC" and for the machine code
CLOADM "DRIVER". To play the recorded
sound, enter EXEC 31091.

If you do this, bear in mind that the
recorded sound takes up a large amount of
memory, leaving less space for your own
program.

10 PCLEAR8:CLEAR200,30999:CLS:B =191
20 K=31000
30 READA:IF A<0 THEN60
40 IF A<256 THENPOKEK,A:K= K +1:T=

T+A:GOT030
50 IF T< >A THENPRINT" error.CHECK

• DATA IN LINE";1000+10 * INT

An analogue signal coming into the
cassette port is sampled 2000 times a
second. When the signal is above the
threshold voltage, it is detected and
registers a 1. Signals below this level
register a 0. The digitally-produced
trace thus, in effect, mimics the
analogue sound wave

((K — 31001)/20):END ELSET =0:GOT030
60 DEFUSR0 =31000:DEFUSR1 = 31044:

DEFUSR2 = 31091
70 PRINT@14,"menu":PRINT@

135,"1 — FREQ* BAR CHART":PRINT@
199,"2— RECORD SOUND":PRINT@263,
"3— PLAYBACK SOUND"

80 A$=INKEY$:IF A$<"1" OR A$>"3"
THEN80

90 ON VAL(A$) GOSUB200,400,600
100 CLS:GOT070
200 PMODE4:COLOR0,5:CLS
210 PRINT" POSITION TAPE, PRESS PLAY

❑ ❑ ❑ ❑ ❑ 111 ❑ FOLLOWED BY enter"
220 MOTORON:AUDIOON
230 IFINKEY$< >CHR$(13) THEN230
240 MOTOROFF:PRINT@192,"PRESS `M'

FOR MENU OR [SHIFT] @ TO FREEZE
PICTURE"

250 FORG =1T04000:NEXT:MOTORON
260 SCREEN1,1
270 PCLS:FORX=0T0255:A= B-4 *

 USR0(0):IF A<0 THENA =0
280 LINE(X,B) — (X,A),PSET
290 IF INKEY$="M" THENX = 255:NEXT:

MOTOROFF:RETURN
300 NEXT:GOT0270
400 CLS:PMODE3:MOTORON:AUDIOON:

PRINT" POSITION TAPE, THEN PRESS
PLAY FOLLOWED BY enter"

410 IF 1NKEY$< >CHR$(13) THEN410
420 SCREEN1,0:N = USR01(0)
430 MOTOROFF:RETURN
600 CLS:PRINT" PLAYING BACK RECORDED

SOUND"
610 N =USR02(0)
620 PRINT@129,"AGAIN (YIN) ?"
630 A$ = INKEY$:IF A$ < >"Y" AND

A$ < >"N" THEN630
640 IF A$="Y" THEN 600
650 RETURN
1000 DATA 26,80,206,255,32,142,2,233,204,

0,0,102,196,37,10,16,163,132,48,31,1915
1010 DATA 38,245,126,140,55,195,0,1,32,7,

102,196,36,237,16,163,132,48,31,38,1838
1020 DATA 245,126,140,55,26,80,142,0,0,48,

31,38,252,220,25,131,0,1,52,6,1618
1030 DATA 158,186,198,8,134,11,74,38,253,

118,255,32,105,132,90,39,4,18,18,32,1903
1040 DATA 4,48,1,198,8,172,228,38,231,53,

134,26,80,182,255,1,132,247,183,255,2476
1050 DATA 1,182,255,3,132,247,183,255,3,

182,255,35,138,8,183,255,35,158,186,220,
2916

1060 DATA 25,131,0,1,52,6,134,8,52,2,230,
128,88,36,4,134,252,32,3,79,1397

1070 DATA 33,253,183,255,32,134,8,74,38,
253,33,251,106,228,39,8,109,159,31,64,
2291

1080 DATA 30,136,32,224,134,8,167,228,172,
97,38,214,53,146,1679,-1

Your computer can be a cunning Fox
and Geese player. See how Artificial
Intelligence methods can be applied
to writing games programs which
can think ahead

Earlier in INPUT you saw how an Othello
program could be written in which the com-
puter could play an acceptable game against a
human player. However, with a little practice,
you should be able to beat the computer most
of the time.

Over the next three parts of Games Pro-
gramming you'll see how a more sophisticated
program can be written, to enable your
computer to play the game of Fox and Geese.
The program has many levels of skill, so you
can make the game as difficult or as easy as
you wish.

Fox and Geese illustrates many .of the
problems and principles involved in writing
one of the most interesting and enduring of
games programs to play—namely, chess. An
average commercial chess program running
on a home micro can give most chess players a
run for their money, unless they are of a very
good standard, or understand the weaknesses
of computer chess.

It's impossible to write a chess program
that will be worth playing in BASIC, because
the machine will take an age over each move.
In the higher levels of Fox and Geese, you'll
find that the program takes rather a long time
considering each move—perhaps in excess of
half an hour on the very highest levels
running on the slower machines. The pro-
blems would increase many-fold if you were
to attempt to write a chess-playing program
instead.

To keep the exercise out of the
realms of machine code, a simpler
game is needed. Fox and Geese
fills the bill very nicely because it
has many of the characteristics of
chess, and even takes place on the
same kind of board.

This article is in three parts.
In this first part, you will see the
principles behind a program of this type—
building up to a complete, playable game in
parts two and three* But let's start by looking
at the game itself, and what is required of the
program to play it.

THE GAME
Fox and Geese is played on the white squares
of a standard chessboard. There is one fox

which starts off at one end of the board, and
four geese, which start from the opposite end.
One player controls the fox, and the other the
geese. The object of the game is for the fox to
find its way past the geese and reach the
opposite end of the board, or for the geese to
corner the fox.

With four against one, the game may seem
a little one-sided, but the geese are limited to
forward movement only, whereas the fox may
move backwards as well as forwards. The
program has been written so that the com-
puter may play either the fox or the geese, or
may be set to play against itself*

TACKLING THE PROBLEMS
Fox and Geese is very like chess in that there
is no element of chance within the game—the
outcome is totally dependent on the skill of
the players. Although in theory it would be
possible for the computer

to learn to play through trial and error, like a
human player, at the current state of the art
this isn't the best way of solving the problems
involved—and the program wouldn't fit in
your micro!

Programming a game like Fox and Geese,
or chess, is really an exercise in Artificial
Intelligence. To offer a stern challenge to a
human opponent, the computer must be able
to play intelligently. Unfortunately, the ma-
chine cannot look at a board and absorb the
spatial relationships between the pieces the
way you can. Instead, the positions on the
board have to be converted to numeric values
that the computer can understand*

If you want to write a program that will
enable a computer to play intelligently, you
must first look at the nature of the game. The
type of game will dictate the type of program.

MAKING THE COMPUTER A
SKILFUL PLAYER

FOX AND GEESE AND CHESS
THINKING PROGRAM THEORY

EXPLAINING THE GAME

TACKLING PROGRAMMING
PROBLEMS

EVALUATING GAME POSITIONS
TREE SEARCHING

STARTING THE PROGRAM

There may be a fully-documented 'best
method' which you could adapt* Likely
candidates for this kind of treatment are
things like solving Rubik's cube, noughts and
crosses, or openings in chess. In cases like this
your task has been greatly simplified.

If there is a large element of chance in the
game it may be possible to use a 'one-mover'
strategy in which the program examines all
the possibilities open to it, just one move
ahead. The program should be designed to
pick the best move* Ludo and Monopoly
could be suitable candidates for one-movers.
Games like this need comparatively
simple decision-making routines.

In games with little or no chance element,
like Fox and Geese, you should use a 'con-
secutive move' strategy—looking ahead
through a series of moves to investigate the
possible outcomes* The program finds the
most advantageous move from any position,
and then makes it.

EVALUATION OF POSITION
In order to enable the computer to decide on
the best move from a range of possibilities,
each of the squares on the board is given a
numeric value* In Fox and Geese, the further
down the board the fox is, the better for the
fox—remember, the fox wins when it reaches
the opposite end of the board.

The rows of squares are numbered altern-
ately from left to right, and then right

to left* This ensures that the geese will
tend to keep in a straight line—their

strongest configuration—as the highest-
numbered square alternates between

the left and right hand ends of the row.
In addition to the simple positional evalu-

ation, the five white squares in front of the fox
have a special significance for the game* If you
look at figure 1, you'll see five squares
labelled A to E. If there is only one goose
positioned on these squares, the fox will win;
if there are two geese, and they are not on
positions A or B; or if there are three geese,
and they are at positions ACD, BDE, ACE or
BCE, the fox will still win.

At the start of each turn, when the com-
puter is playing either the fox or the geese, the
program jumps to a subroutine which looks at
the position (or configuration) of all the pieces
and converts it to a single number which the
program uses to decide which move to make.
When the decision has been made, the num-
ber is converted back into a configuration.

TREE SEARCHING
The possible moves from a position on the
board can be represented by a tree structure,
with branches emanating from the piece's
(root) position. For example, from the po-
sition in figure 2, the first level of the tree in
figure 3 could be drawn. If you look ahead

point in storing anything in a table unless at
least five plies are being looked at.

Thirdly, the so-called alpha-beta algorithm
may be employed* This was discovered in the
early 1960s by researchers in the field of
artificial intelligence, and comes into play
every time the tree search needs to examine
more than one ply of a tree.

If you look at figure 3, you can see the
evaluations of the possible moves from a fox
position. The program will fully evaluate
branch A, and then pass on to branch B. If, at
any stage in evaluating B, a worse outcome is
found, all the moves in B will be rejected. The
best move so far is remembered by the
program and compared with the outcomes in
each branch in turn. Finding at any point a
worse outcome will cause the whole branch to
be rejected.

The alpha-beta algorithm really comes into
its own as the tree gets more and more
complex. If the tree gets big enough, it can
allow you to discard about 99.8% of the
possibilities at an earlier stage, with a similar
saving in time. But in this game the tree will
not approach this level of complexity.

STARTING THE PROGRAM
Now that you have some idea of the theory
behind writing this kind of game, you can
pass on to entering the first section of
program. It concerns setting up the graphics,
but you won't see anything at this stage if you
RUN the program. Don't forget to SAVE it on
tape ready for the next part of the program*

two moves, the tree becomes more complex,
as in the second level—notice that there is no
reason for there always to be four branches
from each square, because the piece may be
blocked by another, or may find itself at the
outside edge of the board.

SPEEDING UP THE PROGRAM
With the number of calculations to be perfor-
med, BASIC can prove very slow, but there
are three ways to speed up the program.
Firstly, you can make sure that the program
doesn't bother to evaluate the opponent's
next move, if your move has won the game.
However, this only saves time at the end, not
throughout the game.

Secondly, the same configuration can very
frequently be reached from many different
routes. If this is the case, it may pay you to
build up a table of common configurations
and the calculated values associated with
them. Such a table stops the program assess-
ing the position again individually each time,
but there is no doubt in storing a configur-
ation which would take less time to evaluate
than it would to find it in the table. Theoreti-
cally, the table can be used only when the
program is looking ahead three plies (com-
plete turns of both players) or more, the
practice of the game proves that there is no

10 DEF FN A(F) = INT (LN (F)/L2 + .001)
100 GOTO 2002
2002 GOSUB 5000
2006 BORDER 4: PAPER 4: CLS
2008 PRINT AT 8,1; FLASH 1;"PLEASE WAIT

WHILE SETTING UP"
5000 FOR J=USR "A" TO USR "D" + 7:

READ A: POKE J,A: NEXT J: RETURN
5070 DATA 20,28,55,127,15,20,40,72,0,0,

248,252,250,40,20,20,0,0,0,7,205,123,60,
15,12,20,31,152,248,216,48,224

6000 LET $$(1)="// ❑ 1./ ❑ 2/
■❑ 3 ■■❑ 4"

6010 LET S$(2)=" ❑ 8111.❑ 7/M ❑ 6
•• ❑ 5.."

6015 LET S$(3)="// ❑ 9/.10/.
11/ .12"

6030 LET S$(4)="1601/15/.14/
III1311111"

6040 LET S$(5)="111/ 17/. 18 11/
19/II20"

6050 LET S$(6) = "24/ .23/ /22.
/21 /II"

6060 LET S$(7)="1./ 25/•26••
27/1128"

6070 LET S$(8) = "32U U31 /30/

■ 29 ■■ "
6100 RETURN

Before using the Commodore program you
must move up the start of BASIC to make
room for the graphics sets. Type

POKE 44,18
POKE 256*18,0
NEW
each time before LOADing in the program.

1 IF PEEK(44) =8 THEN END
2 POKE 53280,6: POKE 53281,6:PRINT

"IDIEIDEFINING GRAPHICS...":
GOSUB 4000

4000 POKE 56334,0:POKE 1,35
4010 FOR Z=0 TO 1023:POKE 2048+Z,

PEEK(53248+Z):NEXTZ
4020 POKE 1,39: POKE 56334,1
4030 FOR Z=680 TO 711:READ X:POKE

2048 + Z,X: N EXTZ

4040 FOR Z=3329 TO 3334:POKE Z,129:
NEXTZ:POKE 3328,255:POKE 3335,255

4050 RETURN
5000 DATA 0,0,0,7,205,123,60,15,12,20,31,

152,248,216,48,224
5010 DATA 20,28,55,127,15,20,40,72,0,0,

248,252,250,40,20,20

LI
2 MODE 4
10 PROCCHARS
4000 DEFPROCCHARS
4010 REM 224:225 226:227
4020 VDU 23,224,0,0,0,7,205,123,60,15
4030 VDU 23,225,12,20,31,152,248,216,48,224
4040 VDU 23,226,20,28,55,127,15,20,40,72
4050 VDU 23,227,0,0,248,252,250,40,20,20
4060 VDU 23,228,128,128,128,128,128,128,

128,255
4070 VDU 23,229,1,1,1,1,1,1,1,255
4080 VDU 23,230,255,128,128,128,128,128,

128,128
4090 VDU 23,231,255,1,1,1,1,1,1,1
4100 VDU 23,232,80,160,80,160,80,160,80,

160
4110 VDU 23,233,255,255,255,255,255,255,

255,255
5000 ENDPROC

5 CLS:PRINT@230,"SETTING UP
GRAPHICS":GOSUB4000

10 SCREEN1,0:GOT010

4000 PMODE3:PCLS:DIMGS(5),FX(4),SQ(10)
4010 DRAW"BM3,0C2FGR3FR5E3RED3FDGL

GNFLNG2LH2LH":PAINT(12,5),2:PSET
(0,1,4): PSET(14,5,4): PSET(16,4,4):GET
(0,0) — (19,9),GS,G

4020 DRAW"BM18,20C4GL13HLG2R2F2ND4
R10ND4U2":PAINT(10,22),4:PSET(2,21,1):
GET(0,20)—(19,28),FX,G

4030 LINE(0,0) — (175,175),PSET,BF:COL0R
3:LINE(8,8) — (167,167),PSET,BF

4040 FORK =8T0128 STEP40:F0RL = 28TO
148 STEP40:PUT(L,K) — (L + 19,K +19),
SQ,PSET:PUT(L — 20,K + 20)— (L-1,
K+39),SQ,PSET:NEXTL,K

4050 PUT(68,13)— (87,21),FX,PSET
4060 FORK = 8T0128 STEP40:PUT(K,153) —

The Dragon's colourful board ..*

FN C(F) + 4) = F$(FN W(F/4 —.2) +1)
340 FOR A=1 TO 8: PRINT AT 2 * A,8; PAPER

7;S$(A): PRINT AT 2*A +1,8; PAPER
7;R$(A): NEXT A: RETURN

310 F = FNA(ABS(P)) —31:B= P/B(F):IF
B<0THENB=B+BX:F=31 —F

320 C=B/B(28):FORA=7TO0STEP-1:R$
(A) = B$(1NT(C),1ANDA):C = (C— INT
(C))*16:NEXTA

330 R$(F/4) = LEFT$(R$(F/4),FNC(F)) + F$
(F/4AND1) + RIGHT$(R$(F/4),12 — FNC
(F))

340 PRINT"0";:FORA=0T07:PRINT TAB
(7);"aM ❑❑❑❑ •k";S$(A)"a

and the Acorn version

1 ❑❑❑❑ "
350 PRINT TAB(7);"all OE LI I=1

M1/2";R$(A)".2M El DOD":
N7XTA:PRINT".":RETURN

F'
310 F=FNA (ABS(P))— 31: B -= P/ B(F):

IFB<0 THENB=B+BX:F=31 —F
320 C= B/B(28): FOR A =7T00 STEP-1:

R$(A)= B$ (INT(C),1 AND A):C= (C-
INT(C))*16: NEXTA

330 R$(F/4) = LEFT$ (R$(F/4), FNC
(F))+F$(F/4 AND 1)+RIGHT$
(R$(F/4), 12— FNC (F))

340 CLS: FOR A = 0T07: PRINT TAB(8)
CHR$ 233; CHR$ 233; CHR$ 233;
CHR$ 233; S$(A) CHR$ 233; CHR$ 233;
CHR$ 233; CHR$ 233

350 PRINT TAB(8) CHR$ 233; CHR$ 233;
CHR$ 233; CHR$ 233; R$(A) CHR$ 233;
CHR$ 233; CHR$ 233; CHR$ 233:NEXTA:
RETURN

Lines 310 to 350 display the board with the
five pieces in position. The subroutine is
called once a turn, by fox and geese alike.

The drawing instructions for the Dragon
and Tandy are in the subroutine along with
the high resolution graphics DATA.

(K+19,162),GS,PSET:NEXT
4070 TH$="R2ND6R2BR4D6BR4U3LBR6ND

3BU2UBF3ND3R4D3BR5U6D3NR3F3BR4U
3BU2UBF3BR2ND3R4D3BR7L3U3R3D6L3
BE3BR4RBR5RBR5R"

4080 MW$="ND6F3RU3D6BR9L4U3R4D3B
E3F3UE2BR3R3DL3D2R3BR6NU6E2F2NU6
BR3U6D3R4D3BR7L3U3R3DL3BR7NUNR2
D2BR8L3U3R3DL3BE4BR7R4D3L4D3"

4090 WG$="RD6E2F2U6BR4D6BR4U3NL2B
F3U3BU2UBF3BRNR3D3R3BR4NU6BR4U3
NL3BE3BR8L4D6R4U3BR4D3R4U3L4BR8
D3R4U3L3BR9BUL2D2R2D2L2BR9L3U3R3
DL"

4100 V$="T402DEFBGACDEGGDCDE"
4200 C=1:G=0:RETURN
5000 FORK= 1T014:PUT(200,5) — (210,15),

SQ,PRESET:PLAY"T50AC":PUT(200,5)—
(210,15),SQ,PSET:PLAY"DA":NEXT:
RETURN

DISPLAYING THE BOARD

a
310 LET F= FN A(ABS (P)) —30: LET

B=P/B(F): IF B <0 THEN LET
B= B+BX: LET F= 33— F

320 LET C=B/B(29): FOR A=8 TO 1 STEP
—1: LET R$(A)= B$(1NT (C)+1,(2—FN
W(A))): LET C = (C— INT (C))*16: NEXT A

330 LET R$(INT (F/4 + .8))(FN C(F) +1 TO

The 'CLIFFHANGER' listings published in this
magazine and subsequent parts bear absolutely no
resemblance to, and are in no way associated with,
the computer game called 'CLIFF HANGER' re-
leased for the Commodore 64 and published by
New Generation Software Limited.

You've got a title page, an
instruction page, cliff and a tune.
But you need a routine that tells
them when they're needed and
starts Willie off

This is part seven of Cliffhanger, so you
might think that you have already started the
game.

A machine code game needs an initializ-
ation routine which calls the titles and the
instruction and the music and sets the score,
levels and lives to their starting values, and
starts off the game. Its origin is the loca-
tion you call when you want to run the

program. This is called from BASIC and
normally you'd have a bootstrap program (see
pages 459 to 463). Here, though, there is no
real need for protection. Besides, you need to
be able to get inside the program to modify
it—so you won't want it auto-running.

a
This is it: the routine that starts off the
Spectrum version of Cliffhanger.

org 58576
gbin 	call ti

Id a,5
Id (57343),a
Id a,0
Id (57344),a

Id h1,0
Id (57337),hI
Id (57339),hI
Id (57341),hI

nlv 	Id a,19
Id (60005),a
ret
org 58035

ti
org 58281

msk *

The origin here is obviously the address you
call with your RANDOMIZE USR command to
set the game going. Make a note of it.

The labels that lead instructions here are
not called within this piece of programming.

They are called from other pieces of pro-
gramming that will be published later. These
are used to initialize the game when Willie has
been killed and you have to start again.

THE SET-UP
The first thing the routine does is called the ti
subroutine. This is the routine that prints the
titles and the instruction pages call other
routines given so far.

The various score parameters are then
initialized* The score itself is stored in mem-
ory locations 57,331 to 57,342. The number
of lives is stored in 57,343. And the level is
stored in 57,344.

So 5 is stored in 57,343 via the one byte A
register to start the player off with five lives*
And 0 is stored in the level store 57,344, so
that the game starts off on level one.

The score is set to zero by loading 57,337
and 57,338, 57,339 and 57,340, and 57,341
and 57,342 with 0, via the two byte HL
register pair.

Then A is loaded with 19 and the music
routine, msk is set to play 19 notes of
Greensleeves.

131.K
The following routine sets up the game so that
its levels and lives are set as they should be at
the beginning of each game:

OR G 25856
LDA # 1
STA 49152
LDA # 5
STA 49153
LDA # 40
STA 49164
STA 49154
LDA # 15
STA 53280
STA 53281
LDA # 10
STA 53287
LDA # 2
STA 53288
LDA # 1
STA 53289
LDA # 5
STA 53290
STA 53291
STA 53292
LDA # 0
STA 54276
STA 54283
STA 54290
LDA # 15
STA 54296
LDA # 67
STA 50000

When do I start putting the
game together?
Cliffhanger has been designed so that
you can either enter and assemble the
whole thing in one go at the end or
build it up week by week. As far as
possible the program does not call
routines coming in future issues. But it
may call data and routines in earlier
parts, so make sure these are in memory
when you execute a routine to test it.

If you have not assembled a routine
that is called by the one you want
to test, try putting a return
instruction in at the point it
is called. This will save
you from a crash.

LDA # 4
STA 50010
LDA #112
STA 50001
LDA #4
STA 50011
LDA # 230
STA 2040
LDA # 232
STA 2041
LDA # 237
STA 2042
LDA # 234
STA 2043
STA 2044
STA 2045
LDA # 233
STA 2046
RTS

Memory location FFD2 is in the Kernal
ROM* This routine is the one that PRINTS a
character string* The accumulator is used to
carry parameters into that routine and loading
A with 8, jumping to the subroutine at FFD2,
then loading A with 142 and jumping to the
subroutine has exactly the same effect as:

PRINT CH R$(8);CHR$(142)

This, you may remember from BASIC, dis-
ables the key. This is important. Hitting
the BE key during the game—especially if it
is shifted—can cause problems*

Next the sprite collision flags have to be
cleared, otherwise when the game is reset it

will start on level two. This is done by loading
the accumulator with the contents of the two
collision flags at 53,278 and 53,279 on the
VIC chip.

O N THE LEVEL
The game starts off each time on level one, so
1 is loaded into the accumulator* This is then
stored in the memory location which holds
the level, 49,152*

Willie has five lives to start with, so 5 is
loaded into the accumulator and stored in the
`lives' memory location, 49,153.

The sea is controlled by the variable in
49,164 and the delay which tells the game how
fast to go is in 49,154* These are both
initialized to 40* All the memory locations
mentioned above are part of the variable table
you have set up in RAM.

COLOUR SET
Memory locations 53,280 and 53,281 are on
the VIC chip* 53,280 controls the border
colour and 53,281 controls background
colour zero. These are set to 15 which puts the
screen into multi-colour mode.

Memory locations 53,287 to 53,292
inclusive are on the VIC chip too and set the
colours of the first six sprites*

THE SOUND OF SILENCE
The next thing to do is to cope with the sound
output. Locations 54,276, 54,283 and 54,296
are all on the SID chip* And they're not really
memory locations at all, they're control
registers.

54,276 controls voice one, 54,283 controls
voice two, and 54,296 is the register that
selects the filter mode and volume. Saying
that they are registers means that each bit
controls a different input/output function.
For example, bit seven of the voice control

registers selects a random noise waveform* Bit
six selects a pulse waveform, bit five a
sawtooth waveform and bit four a triangular
waveform. Bit three is a test bit which
switches the oscillator off. Bit two controls
ring modulation, bit one the synchronization
and bit zero is the gate which either starts the
note off or tells it when to begin cutting off
the note*

The filter mode and volume register acts
similarly bit by bit. Bit seven controls the cut-
off of voice three* Bits six, five and four select
the high-pass, band-pass and low-pass filters
respectively. And bits three to zero select the
output volume which can be set anywhere
between 0 and 15.

Each of the register's various functions are
controlled by setting, or resetting, the appro-
priate bit. Generally, setting a bit to 1
switches on a particular function, and reset-
ting it to 0 switches that function off again.

At the beginning of the game, you want to
switch all these functions off to clear out any
bits left over from sounds made before. So 0 is
loaded into the accumulator and stored in
54,276, 54,283 and 54,290*

GULLS AND SPRITES
At the beginning of the game the seagulls have
to be moved back to their start positions* The
screen coordinates of the gulls change as the
game goes on, so their values are stored in
the variable table in RAM too, at memory
locations 50,000 and 50,001, 50,010 and
50,011. And the start coordinates of the gulls
are stored in those locations*

Memory locations 2,040 to 2,047 are in
ROM* They are the sprite data pointers* The
numbers in there tell the processor where to
find the data for the sprites* You'll notice that
the first seven sprite data pointers are loaded,
while only the first six had their colours set.
In fact, seven sprites are being used, but one
of them is empty* And, although it needs null
data to make it empty, it does not need to have
a colour set as it only uses the background
colour*

LIVES AND LEVELS
At the beginning of each screen, you have to
set the number of levels and lives to the right
value. The following routine does just that:

0 RG 25393
LDX 49153
LDY #0
LDA #27
LOOPI STA 1070,Y
INY
DEX
BNE LOOPI
LDA LEVEL
CMP #6
BNE C
LDA #1

The number of lives Willie has left are stored
in 49,153. And the contents of this location

are loaded into the X register* The index
register Y is then set to 0*

The accumulator is then loaded with 27,
which is the UDG number of the man
graphic. This is stored on the screen at
location 1,070 offset by Y. Y is incremented
and X decremented* And if X has been
decremented to zero, the processor loops
back.

So the processor goes round the loop the
same number of times as the lives Willie has
left* Each time it prints up a little man graphic
on the next position on the screen. This gives
as many men as lives left*

The number of the level you are on is
stored in 49,152. This is compared to six. If
11.'s not six the processor branches forward
over the next little routine.

Level five is the top level in the game. So if
the value in the level variable stored at 49,152
has reached six, it is set back to one by loading
1 into the accumulator and storing it in
49,152*

For completing level five—and nominally
reaching level six—you earn an extra life. So

STA 49152
INC 49153
DEC 49154
C 	LDX 49152
LDY #0
LDA # 9
LOOP STA 1110,Y
INY
DEX
BNE LOOPJ
RTS

number 9 is loaded into the accumulator and
stored in the screen. This is the screen code
for a capital I (or a 1 in Roman numerals).

El
The Acorn's initialization routine calls many
of the routines given so far, and a few that
haven't, such as the ones at 1A2E and 1A3C.
So don't call it until there are programs at all
the addresses it jumps to, which will be given
in later issues. Type PAGE = &3000, NEW
(and *TAPE; if you have a DFS) as normal to
type it in and assemble it.

70 DATA1
80 DATA4
90 D ATA2
100 DATA5
110 DATA6
120 FORA% = &1 B2DTO&1 B31:READ?A%:NEXT
160 FOR PASS = 0TO3STEP3
170 P%= &1 B32
180 [OPTPASS
190 .PtSc
200 LDA # 22
210 JSR&FFEE
220 LDA # 2

230 JSR&FFEE
240 JSR&1483
250 JSR&1855
260 JSR&182D
270 JSR&1A2E
280 JSM1 A3C
290 JSR&1894
300 LDX&83
310 LDA&1 B2D,X
320 AND # &1
330 B EQLb1
340 JSR&193D
350 .Lb1
360 LDX&83
370 LDA&1 B2D,X
380 AND # &2
390 BEQLb2
400 JSR&19B9
410 .Lb2
420 JSR&1AFF
430 RTS
440]NEXT

SCREEN BY SCREEN
The DATA tells the program what elements
appear on which screen. The 1 specifies

potholes, the 4 boulders and the 2 snakes. So
5 specifies potholes and boulders and 6
specifies snakes and boulders. This is the
order that the obstacles come in. Again, this
DATA is read into a data table—from &1B2D
to &I B31—where the machine code program
can access it.

The first thing the assembly language
program does is change MODE. Loading 22
into the accumulator and jumping to the
routine at &FFEE, does that. The 2 loaded up
after that and output through the &FFEE
routine makes the change to MODE 2. Then
the processor jumps to a series of subroutines
—in Lines 240 to 290—which set the game
going.

The routine at &1483 switches the cursor
off. The one at &1855 sets the colours. The
one at &182D defines the characters. The one
at &1A2E prints the headings, seagulls and
clouds. The one at &1A3C prints the score
and lives. And the one at &1894 prints up the
slope.

The memory location at &83 is used to
store the number of the level the player has
reached. So it also specifies which screen is
required. The level number is loaded from

&83 into the X register so that it can be used
as an index*

The accumulator is loaded with data from
the screen data table, offset by the level
number in X. And AN Ding it with 1 asks
where bit zero is set and potholes are
required.

If this bit is not set, the BEQ jumps the next
instruction. If it is set, the BEQ's condition is
not fulfilled and the processor jumps to the
subroutine at &1B2D, which prints the po-
tholes over the contour of the slope*

The appropriate data byte is loaded up
again and AN Ded with 2 this time* This checks
whether bit one is set and whether snakes are
required.

Again, if this bit is not set, the BEQ jumps
the next instruction* If it is set, the BEQ's
condition is not fulfilled and the processor
jumps to the subroutine at &19B9, which
prints the snakes over the contour of the
slope* The printing up the boulders are dealt
with elsewhere.

Finally in this section, processor jumps to
the subroutine at &1AFF* This is the one that
prints up Willie's goodies at the top of the
slope*

MI hal
This is the routine that fires the Dragon
version of Cliffhanger into action*

	

ORG 	19426
GBIN 	JSR 	START

	

LDA 	#5

	

STA 	18239

	

CLR 	18238

	

LDX 	#18240

	

LDB 	#6
GBINI 	CLR 	,X+

DECB

	

BNE 	GBINI
RTS

	

START EQU 	19000

The origin here is obviously the address you
call with your EXEC command to set the game
going* Make a note of it.

The labels that lead instructions here are
not called within this piece of programming*
They are called from other pieces of pro-
gramming that will be published later* These
are used to initialize the game again when
Willie has been killed and you have to start all
over again*

MAKING A START
The first thing this routine does is to jump to
the subroutine labelled START* This is the
routine that prints the title and instruction
pages and starts the game going* The next
thing that has to be done is to initialize all the
score parameters.

The level the player has reached is stored in
memory location 18,238* The number of lives
is stored in 18,239* And the score itself is
stored in the six bytes from 18,240 onwards*

So 5, the number of lives Willie starts out
with, is loaded into the accumulator and
stored in 18,239* Memory location 18,238 is
then cleared to set the level to zero—which
gives level one*

The X register is then loaded with the
location of the first score byte and B is loaded
with 6—the number of score bytes* CLR ,X +
then clears the byte pointed to by X and
increments X* DECB decrements B and the
BNE instruction branches back to clear the
next byte if the B has counted down to 0. This
little routine sets all the memory locations
18,240 to 18,245—that is, those set aside to
store the score—to 0, one after another.

The computer's inner workings may
seem somewhat obscure, especially
when things start to go wrong. But
if you understand how a program is
stored you're well on the way to
sorting out the bugs
Have you ever wondered what the computer
does with a program when you type it in? You
probably know that it stores it in a special area
of memory reserved for BASIC programs,
but do you know where this is, and do you
know what the program looks like when it is
converted into something the computer can
understand?

In fact the program in the computer's
memory is very similar to the characters you
type in and a lot of the numbers in memory
are ASCII codes of letters from the program.
But the computer shortens some words—the
keywords—and puts in extra information,
literally between the lines, to help it keep
track of where it is.

The computer also has a separate area
where it stores the variables set up by the
program as these change while the program is
running and need to be updated continuous-
ly. So when you type 10 LET A = 6, say, the
computer stores the line as part of your
program and also puts the name and value of
the variable into the variable store.

Now to start exploring. First enter the
following simple program. Type it in exactly
as shown. On the Spectrum don't enter any
spaces at all. On the other computers enter a
space only after the words PRINT and LET. You
can now use this to discover how the com-
puter stores programs.

10 PRINT "HELLO"
20 LET A=2
30 PRINT A
40 STOP

There are two memory addresses in the
Spectrum which together act as a pointer to
the start of the BASIC program—these ad-
dresses are 23635 and 23636. To find out
where your BASIC program starts, enter the
following direct command:

PRINT PEEK 23635 + 256 * PEEK 23636

This will normally give the answer 23755 for
a 48K Spectrum. If you find that your
computer gives a different answer and you
have typed the command in correctly, then
change 23755 in the following command to
your value. Now type in this direct command

FOR I = 23755 TO 23755+40:PRINT PEEK
I," 0" ;:NEXT I

You should get the following output. If not,
check that you have typed the command
correctly:

0 	10 	9 	0 	245 34 	72 	69
76 	76 	79 	34 	13 	0 	20 	11
0 	241 65 	61 	50 	14 	0 	0
2 	0 	0 	13 	0 	30 3 	0
245 65 	13 	0 	40 2 	0 	226
13

Now, using the ASCII codes for letters and
numbers, see if you can make sense of this:

? 	? 	? 	? 	? 	" 	H 	E
L 	L 	0 	" 	? 	? 	? 	?
? 	? 	A 	= 	2 	? 	? 	?
? 	? 	? 	? 	? 	? 	? 	?
? 	A 	? 	? 	? 	? 	? 	?

You can see part of the BASIC program
emerging already, but there are still a fair
number of question marks.

You might expect PRINT to precede the
"HELLO" but instead the list shows the value
245. The Spectrum uses values above 164 to
signify BASIC keywords. If you consult a list
of these in the manual you'll find that 245 is
the value, called the token, used for PRINT.
Looking at the values for the tokens, you can
now fill in the keywords:

? 	? 	? 	? 	PRINT" 	H 	E
L 	L 	0 	" 	? 	? 	? 	?
? 	LET A 	= 	2 	? 	? 	?
? 	? 	? 	? 	? 	? 	? 	?
PRINTA 	? 	? 	? 	? 	? 	STOP

If you look at the 2nd, 15th, 30th and 37th
bytes in the original table you will notice a
pattern ... 10, 20, 30, 40. These bytes are

used to hold the low order part of the line
number, the preceding byte is used for the
higher order part. The next two bytes in the
line, low order byte first this time, are used to
store the length of the line, excluding these
first four bytes.

You now have the following picture:

0 	10 	IenL IenH PRINT" 	H 	E
L 	L 	0 	" 	? 	0 	,20 	IenL
IenH LET A 	= 	2 	? 	? 	?
? 	? 	? 	? 	0 	30 	IenL IenH
PRINTA 	? 	0 	40 	IenL IenH STOP

Now for the final few bytes. The value 13 is
used to indicate end-of-line (eol). The value
14 indicates that the following four bytes are
the coded form for a numerical constant, in
this case 2. The code 14 is used to indicate a
numerical constant in the variable list table
(vlt). Here, then, is the final picture:

0 	10 	IenL IenH PRINT" 	H 	E
L 	L 	0 	" 	eol 	0 	20 	IenL
IenH LET A 	= 	2 	vlt 	0 	0
2 	0 	0 	eol 	0 	30 	IenL IenH
PRINTA 	eol 	0 	40 	IenL IenH STOP
eol

The Spectrum places a number greater than
40 in the higher order byte of the line number
field to signify end of program.

The command NEW erases any old
programs and variables in the computer—you
cannot retrieve it, so beware.

STORING THE VARIABLES
The last program showed how a BASIC
program was stored in memory, but any
variables set up by the program are stored
separately in a special variable store. There
are two memory addresses-23627 and
23628—that contain the address of the start of
the store, and another two-23641 and
23642—that point to the end.

Try out this program to print the entire
contents of the store:

10 FOR A= PEEK 23627 +256"PEEK 23628
TO PEEK 23641 +256 * PEEK 23642

20 PRINT PEEK A;"171s";
30 NEXT A

FINDING THE START OF BASIC
PEEKING THE MEMORY

TRANSLATING THE NUMBERS
ASCII CODES AND TOKENS

HOW THE PROGRAM IS STORED

POINTING TO THE
VARIABLES STORE

NUMERIC VARIABLES
STRINGS AND ARRAYS

HOW THE MEMORY IS USED

NUMERIC VARIABLES
First set up a variable:

1 LET B =150000

RUNning the program gives the following
output:

98 146 18 124 0 0 225 0
B 	4— value —>

The 98 is ASCII code for B plus 32, this
shows the computer it is dealing with a
numeric variable. The 150000 is stored in the
next five bytes in floating point format (see
page 790). The last two bytes 225 and 0
signify the end of the variables store. They are
always there and so will be missed out from
the next examples.

Long variable names are stored in a similar
way although their names are scrambled
rather more. Try this:

1 LET DAVID = 30
This gives:

164 97 118 105 228 0 0 30 0 0
D A V 	I 	D 4— value —>

The first five bytes store the name DAVID
except that the first letter has 96 added to it to
indicate it is a long name, the middle ones
have the usual 32 and the last letter has 160
added on to indicate the end of the name. The
last five bytes store the number*

STRINGS AND ARRAYS
The next program line shows how strings are
stored:

1 LET A$ = "STRING"
65 6 0 83 84 82 73 78 71
A 	STRING

The name of the string, A, comes first
followed by two bytes giving the length of the
text* ASCII codes for the string itself follow
immediately afterwards*

Now try a numeric array:

1 DIM F(2)
2 LET F(1) =100
3 LET F(2) = 200
134 13 0 1 2 0 0 0 100 0 0

F 	 4- value
0 0 2000 0 0
4-- 	value 	—>

The first byte is F plus 64 for a numeric array
variable. The next two contain the number of
bytes following, low byte first. Count them,
you'll find there are 13* The next byte gives
the number of dimensions and the following
two store the number of elements reserved*
After that are the two numbers, each stored in
five bytes*

Finally, try a string array:

1 DIM B$(2,6)
2 LET B$(1) = "STRING"
3 LET B$(2) = "ARRAY"
194 17 0 2 2 0 6 0

B
83 84 82 73 78 71 65 82 82 65 89 32
S T RI NGAR RAY

The first byte is the ASCII code of B plus 128
for string arrays* The next two give the
number of bytes following. The next byte is
the number of dimensions—in this case 2,
followed by two pairs giving the number of
elements in the array and the maximum
length of each element. These are immedi-
ately followed by the strings themselves. The
space at the end is added on to the word
ARRAY to full up the six characters allocated to
each string*

There are two memory addresses in the 64
which together act as a pointer to the start of
the BASIC program. These addresses are 43
and 44. To find out where your BASIC
program starts enter the following:

PRINT PEEK (43) + 256*PEEK (44)

This will normally give you the answer 2049.
If you find that your computer gives a
different answer and you have typed the
command in correctly, then change 2049 in
the following command to your value:

FOR I = 2049 —1 TO 2049 + 39:PRINT PEEK
(I);:NEXT I

You should get the following output, if not
check that you have typed the command
correctly:

0 15 8 	10 0 153 32 34
72 69 76 76 79 34 0 25
8 20 0 136 32 65 178 50
0 33 8 30 0 153 32 65
0 39 8 40 0 144 0 0
0

Now using the ASCII codes for letters and
numbers, see if you can make some sense of
this:

? 	? 	? 	? 	? 	? 	❑ "
H 	E 	L 	L 	0 " 	? 	?
? 	? 	? 	? 	❑ A ? 	2
? 	? 	? 	? 	? 	? 	❑ A
? 	? 	? 	? 	? 	? 	? 	?

You can see part of the BASIC program
already but there are still a fair number of
question marks. Note that the space box—
❑—represents a space*

You might expect to find the word PRINT
preceding "HELLO" but instead there is the
value 153. The computer uses values above
127 to indicate BASIC keywords* If you
consult a list of these keywords in the manual
you'll find that 153 is the value, called the
token, used for PRINT. You can now fill in the
keywords:

)))) 	PRINT ❑ "
HELLO 	" 	?
? 	? 	? 	LET ❑ A 	= 2
) 	 ?) 	 ?) 	PRINT ❑ A
))))) 	STOP) 	?

If you look at the 3rd, 17th, 27th and 35th
bytes you will notice a pattern..* 10, 20, 30,
40* These bytes are used to hold the low order
byte of the line number, the following bytes
are used to store the high order byte. The two
bytes before the line numbers, again low byte
first, are pointers to the start of the next line.
For example, the first two bytes, 15 and 8,
point to 15 + 256*8 which equals 2063. Since
the address of the first byte is 2048 you can
easily count along to check that the address
2063 is indeed the start of the next set of
pointers* This is shown more clearly below*
Note that the computer uses a 0 to mark the
end-of-line (eol):

ptrL ptrH 10 0 	PRINT ❑ "
HE 	L 	L 	0 	" 	eol pal
ptrH 20 0 	LET 111 A 	= 2
eol ptrL ptrH 30 0 	PRINTEI A
eol ptrL ptrH 40 0 	STOP eol 0
0

The computer signifies the end of a program
by setting the pointer fields (ptrL and ptrH)
equal to zero, so a BASIC program always
ends with three zeros*

When you type NEW, the first two pointer
bytes are set to zero so it is fairly easy to reset
these* The high pointer is always 8 and the
low pointer should equal the length of the
first line counting from the zero to the eol
marker.

STORING THE VARIABLES
The Commodore has three areas where it can
store variables. Simple variables are stored
immediately after the BASIC program and
locations 45 and 46 hold the address of the
start of the store. Array variables are stored
next, with the start address kept in locations
47 and 48. And two more locations-49 and
50 point to the end of the variable store* Any
strings are stored at the other end of the
RAM* The start address is given by the
contents of locations 51 and 52 and the end
address by locations 53 and 54.

SIMPLE VARIABLES
All these locations allow you to find out
exactly where the variables are, and the next
program actually looks through the simple
variable store to see what happens to the
variable A. The numbers underneath are the
contents of the store and if any of these are
ASCII codes they have been translated for
you:

1 AB=123
10 FOR Z= PEEK(45) + PEEK(46)*256 TO

PEEK(47) + PEEK(48)*256 —1
20 PRINT PEEK(Z);:NEXT Z

65 	66 	135 	118 	0 	0 	0
A 	B 	 value
90 	0 	140 	5 	48 	0 	0
Z 	4— 	value

The last seven bytes store the variable Z and
constitute the part of the program used to
look at the memory. So to save confusion
these bytes will be left out from now on* The
variable you're interested in is AB and it is
simply stored as the ASCII codes for A and B
followed by the value of the variable in
floating point format.

If you change Line 1 to a string variable
you'll get the following numbers:

1 ZZ$ = "TEXT"

90 218 4 10 8 0 0
Z Z

The ASCII codes for the variable's name ZZ
comes first, but the second number has 128
added on to it to indicate a string* The next
number gives the number of characters in the
string and the next two bytes are the low and
high pointers to the position of the string in
memory* In this case it is 10 + 8*256 which
equals 2058* This is in fact the position of the
word TEXT in the BASIC program* However,
if the variable changed in the program or it
was originally undefined (as in an INPUT),
then the pointers would point to the string
store which is at the top end of RAM*

ARRAY VARIABLES
A string array is stored in a similar way to a
string* Try the next program and see* Notice
that the pointers in Line 10 are now pointing
to the start and end of the array store:

1 DIM AA$(2)
2 AA$(1) = "APPLE"
3 AA$(2) = "PLUM"
10 FOR Z= PEEK(47) + PEEK(48)*256 TO

PEEK(49) + PEEK(50)*256 —1
20 PRINT PEEK(Z);:NEXT Z

65 193 16 0 1 0 3 0 0 0 5 26 8 4 45 8

As usual this starts with the name and again
128 is added on the second letter because this
is a string variable* The next number, 16, is
the number of bytes taken up in the store*
Count them and check that there are 16* The
next pair gives the number of dimensions and
the pair after that the number of elements
reserved by the DIM statement* Following
these numbers are three bytes per element* As
the first element AA$(0) is not defined, the
first three are zero* For the others, the first
byte gives the number of characters in the
string and the next two point to the position of
the string*

Finally, try a numeric array, a two-
dimensional one this time:

1 DIM AA(0,2)
2 AA(0,0) =1
3 AA(0,2) = 2

65 65 24 0 2 0 3 0 1 129 0 0 0 0
4- value —>

0 0 0 0 0 130 0 0 0 0
4— value —> <— value —>

You should be able to work out the first five
bytes by now. The next two pairs hold the
number of elements in each dimension but in
the opposite order to the DIM statement.
These are then followed by the values of the
variables in floating point format.

ra
The Acorn computers have a BASIC variable
called PAGE which contains the address of the
first byte of the program. PAGE can be
changed, but it is &E00 when you first switch
on unless you have a disk drive* Now type in
this direct command

MODE1: PRINTTAB(0,10): FOR I = PAGE TO
PAGE +36:PRINT ?I;:NEXT I

You should get the following output, if not
check that you have typed the command in
correctly*

13 0 	10 13 241 32 34 72
69 76 76 79 34 13 0 	20
9 	233 32 65 61 50 13 0
30 7 	241 32 65 13 0 	40
5 	250 13 255 0

Now using the ASCII codes for letters and
numbers, see if you can make some sense of
this:

? 	? 	? 	? 	? 	❑ " 	H
E 	L 	L 	0 	" 	? 	? 	?
? 	? 	❑ A 	= 2 	? 	?
? 	? 	? 	❑ A 	? 	? 	?
? 	? 	? 	? 	?

You can see part of the BASIC program
already but there are still a fair number of

question marks which represent out of range
codes* (Note the space box— 0 —is used to
represent a space*)

You might expect to find PRINT preceding
"HELLO" but instead there is the value 241.
The Acorns use values above 127 to signify
BASIC keywords* If you consult a list of
these keywords in the BASIC manual you'll
find that 241 is the value, called the token,
used for PRINT* You can now fill in the
keywords:

? 	? 	? 	? 	PRINT ❑ 	" 	H
E 	L 	L 	0 	" 	? 	? 	?
? 	LET ❑ A 	= 2 	? 	?
? 	? 	PRINT ❑ 	A 	? 	? 	?
? 	STOP ? 	? 	?

You now have to discover what the four bytes
at the start of the line are used for* If you look
at the 3rd, 16th, 25th and 32nd bytes you will
notice a pattern-10, 20, 30, 40* From this
you can deduce that these bytes are used to
hold the line number* The first byte of each
line, ASCII 13, is used to indicate the start of
the line (sol). The 4th byte is used to contain
the length of the line (len), this count includes
the bytes used for the line number as well as
the first byte.

You now have the following picture:

sol 	0 	10 len PRINT ❑ 	" 	H
E 	L 	L 	0 	" 	sol 	0 	20
len LET ❑ 	A 	= 	2 	sol 	0
30 len PRINT ❑ 	A 	sol 	0 	40
len 	STOP sol 	255 0

After the final sol there is the value 255 in the
higher order byte of the line number* If you
multiply 255*256 you will get an answer
which exceeds the allowable line number on
the BBC* This is how the BBC signifies end of
program.

All BASIC programs end with 255 and 0
(or &FF and 0 in hex), and the variable TOP
always points to the next byte after 0* In fact
TOP is always two bytes more than PAGE
because these two bytes are present.

Typing NEW on the BBC sets the second
byte of the program, location PAGE + 1, to
255. Typing OLD will change it back to 0* If
you want to seelhis for yourself then enter the
following direct command:

P* ?PAGE, ?(PAGE +1), ?(PAGE + 2),
?(PAGE +3), ?(PAGE+ 4)

Then type NEW followed by the same direct
command and you will notice that location
PAGE + 1 has changed its value from 0 to 255*
The computer sees this in the high order byte
of the line number, so assumes this to be the
end of the program. The program is not lost,
it's just that the computer doesn't know it is

there* Typing OLD resets the second byte to
zero.

STORING THE VARIABLES
The Acorn computers use a special variable
called LOMEM which contains the address of
the first byte of the variable store. LOMEM is
normally the same as TOP so the variables sit
immediately above a program, but it can be
changed. The address of the top of the store is
contained in memory locations 2 and 3;
there's no special variable name in this case.

The following one-line program prints out
the entire variable store: Type
PAGE = &00*TAPE and NEW before typing this
in* Don't type any spaces except those
indicated.

10 F0R A = LOMEM 0 T0 ?2 + 256*?3 — 1:
P R I NT;?A;" ❑ ";: NEXT: PR INT

If you type RUN you'll see the following:

0 0 140 98 160 0 0

These store the last value of the variable A
used in the program above, and to save con-
fusion they will be missed off all the following
examples.

NUMERIC VARIABLES
Now try setting up a variable. Enter this line
and type RUN, the numbers show the output,
and the ASCII codes have been translated
into letters underneath:

1 HELLO = 123
0 0 69 76 79 0 135 118 0 0 0

E L L 0 4- 	value 	—>

The first two bytes are pointers which hold
the address of the next variable beginning
with the same initial letter—there isn't one in
this case so the bytes are zero. If you get some
other number in the first byte don't worry.
This is the least significaht byte and is not
cleared by the computer so it takes on what-
ever value was in that location before. If the
second byte (the most significant byte) is zero
then the other is assumed to be zero as well.
The pointers are followed by the ASCII
codes for the variable name minus the first
letter, then a zero byte then the value of the
variable in floating point format*

Now try an integer variable:

1 NUMBER%= 123
0 0 85 77 66 69 82 37 0

UMBER %
123 0 0 0
4- value

Again, there are two pointer bytes followed
by the ASCII for UMBER% and a zero. But
this time the number is stored in integer

format, taking only four bytes* Using integers
saves memory and helps to speed up a
program.

STRING VARIABLES
String variables are slightly more compli-
cated, try this:

1S$ = "A STRING"
0 	0 	36 0 	62 14 16 8

65 32 83 84 82 73 78 71
A 	S 	T 	R 	I 	N 	G

As usual the first two bytes are a pointer to the
next variable starting with S. Then there's the
variable name minus the first letter, which
just leaves the $ sign for a single letter variable
like this. Then there's the usual zero byte.
The next two numbers-62 and 14—hold the
address of where the string is stored* The next
number gives the total number of bytes taken
up in the store (count them, there are 16)* The
next number-8—gives the number of bytes
in the string, and this is followed by the
ASCII codes for A STRING.

Have a look at the numbers 62 and 14
again. These point to address 62 + 14*256
which equals 3646* This gives the address of
the first letter in the string—the A* To prove
to yourself that this is correct, type PRINT
LOMEM to find the start of the store and add
on the eight bytes to bring you to the A in the
numbers above. The two numbers should be
the same.

ARRAY VARIABLES
Try a string array first:

1 DIMWORD$(1)
2 WORD$(0) = "ZERO"
3 WORD$(1) = "ONE"

0 0 79 82 68 36 40 0 3 2 0 106 14
0 R D $ (

4 4 110 14 3 3 90 69 82 79 79 78 69
ZEROONE

This starts off similar to a string variable—the
pointer followed by ASCII for ORD$(and a
zero* The next number tells you how many
dimensions there are, worked out as
2*dims + 1. So a one-dimensional array like
this has the number 3, a two-dimensional
array . has 5 and so on. The next two bytes
store the number of elements set up by the
DIM statement* Each element now has four
bytes reserved for it; the first two bytes-106
and 14—give the address of the start of the
word ZERO and the next byte (repeated) gives
the number of characters in the string. After
these come the strings themselves.

Now try a numerical array:

1 DIMNUM(1,1)
2 NUM(1,1)= 40
3 NUM(1,0)•= 20
4 NUM(0,0) =10

0 0 85 77 40 0 5 2 0 2 0
U M (

132 32 0 0 0 0 0 0 0 0

	

value 	4— 	value
133 32 0 0 0 134 32 0 0 0
4— 	value 	4— 	value

This starts off fairly normally. The number 5
shows there are two dimensions since 2*2 + 1
equals 5. The next two pairs of bytes give the
number of elements in each dimension—this
is a 2 by 2 array.

After this comes the elements themselves
in the correct order, it doesn't matter in what
order they were specified. The numbers 10,
20 and 40 are stored as 13232 0 0 0, 13332 0 0
0 and 134 32 0 0 0 in floating point format.
Notice that memory is reserved for element
(0,1) and is set to O*

LEI
There are two memory addresses in the
Dragon which together act as a pointer to the
start of the BASIC program. These addresses
are decimal 25 (hex 19) and decimal 26 (hex
1A). To find out where your BASIC program
starts enter the following direct command:

PRINT PEEK(25)*256 + PEEK(26)

If the computer has just been switched on the
answer will be 7681* If you find that your
machine gives a different answer and you have
typed the command in correctly then change
the 7681 in the following command to your
value:

FOR I =7681 TO 7681 + 39:PRINT PEEK(I);:
NEXT I

You should get the following output, if not,
check that you have typed the command in
correctly:

30 15 0 	10 135 32 34 72
69 76 76 79 34 0 	30 25
0 	20 142 32 65 203 50 0
30 33 0 	30 135 32 65 0
30 39 0 	40 146 0 	0 	0

Now, using the ASCII codes, for letters and
numbers, see if you can make sense of this:

? 	? 	? 	? 	? 	b" 	H
E 	L 	L 	0 	" 	? 	? 	?
? 	? 	? 	❑ A 	? 	2 	?
? 	? 	? 	? 	? 	❑ A 	?
? 	? 	? 	? 	? 	? 	? 	?

You can see part of the BASIC program
already, but there are still a fair number of

question marks. Note that the space box—
El —means a space.

Looking at the above you might expect the
word PRINT to precede "HELLO", but instead
the value 135 appears. The computer uses
values above 127 to signify BASIC keywords.
The number 135 is the value, called the token,
used for PRINT. With these values, you can
now fill in the keywords:

? 	? 	? 	? 	PRINT CI 	" 	H
E 	L 	L 	0 	" 	? 	? 	?
? 	? 	LET ❑ A 	= 2 	?
? 	? 	? 	? 	PRINT ❑ 	A 	?

? 	? 	? 	? 	STOP ? 	? 	?

Unfortunately, the manual doesn't list the
values of the tokens but you can find out what
they are using the following program:

Ntril
10 CLEAR 1000:CLS
20 C = 32819:FOR K=0 TO 78
30 W$(K/39) =W$(K/39) + CHR$

(PEEK(C))
40 C=C+1: IF PEEK(C-1)<128 THEN 30
50 NEXT
60 C=33226: FOR K=1 TO 34
70 F$=F$+CHR$(PEEK(C))
80 C=C +1:IF PEEK(C —1) < 128 THEN 70
90 NEXT

100 PRINT:INPUT" ❑ INPUT T0KEN IN
HEXE";T$

110 TK=VAL("&H"+T$)
120 IF TK > 65280 THEN TK=TK-

65280:GOTO 210
130 IF TK<128 OR TK>205 THEN 250
140 K= —39*(TK>166):P=1
150 IF K = TK —128 THEN W$=W$

(K/39):GOTO 180
160 P= P +1:IF ASC(MID$(W$(K/39),

P-1,1))<128 THEN 160
170 K=K+1:GOTO 150
180 PRINT:PRINT"EITOKEN El";

T$;"111 = ID";
190 A$=MID$(W$,P,1):IF A$ < CHR$

(128) THEN PR1NTA$;:P = P +1:
GOTO 190

200 PRINTCHR$(ASC(A$)AND127):
GOTO 100

210 K=0:P=1:IF TK<128 OR TK>161
THEN 250

220 IF K = TK — 128 THEN W$ = F$:
GOTO 180

230 P= P +1:IF ASC(M1D$(F$,P— 1,
1)) < 128 THEN 230

240 K = K + 1:GOTO 220
250 PRINT" ❑ ILLEGAL TOKEN Cl":

PRINT:GOTO 100

For the Tandy change Lines 20 and 60 and
add Lines 45 and 85:

20C = 43622:FOR K = 0 TO 78
45 IF K = 52 THEN C=33155
60 C= 43802:FOR K = 1 TO 34
85 IF K = 20 THEN C = 33310

Enter any token and the program will print
out the keyword. The numbers for the tokens,
in hex, range from 80 up to CD for most
keywords, and from FF80 to FFA1 for
functions*

You now only have to discover what the
four bytes at the start of the line and the final
byte of the line are used for* If you look at the
4th, 18th, 28th and 36th bytes you will notice
a pattern *** 10, 20, 30, 40* These bytes are
used to hold the line number and the zero
before them is the high order byte used for
large line numbers;

The first two bytes of each line are used as a
pointer to the byte where the next line starts.
For example, the first two bytes are 30 and 15
in locations 7681 and 7682*Multiplying the
contents of location 7681 by 256 and adding
the contents of location 7682, that is
30*256 + 15, gives 7695 the location which
contains the first byte of Line 20. So the final
picture looks like this:

ptrH ptrL 0 	10 	PRINT ❑ 	" 	H
E 	L 	L 	0 	" 	eol 	prtH ptrL
0 	20 LET ❑ A 	= 2 	eol
ptrH ptrL 0 	30 	PRINT LI 	A 	eol
ptrH ptrL 0 	40 	STOP eol 0 	0

Typing NEW on the Dragon resets not only
7681 and 7682 to 0 but also resets several
other locations in memory, and so it is not a
simple matter to retrieve the program. You
can check this for yourself by using a series of
PEEKs to look at the first few location both
before and after a NEW. You have to enter the
PEEKs one by one—you cannot use a FOR ***
NEXT loop as that sets up a new variable which
will alter the program and make it impossible
for you to see what's happening.

STORING THE VARIABLES
The last section showed how a program was
stored but any variables set up by the program
are stored separately in two special variable
stores* There are two memory locations-27
and 28—that contain the address of the start
of the first store, used for simple variables*
Two other locations-29 and 30 point to the
start of the array variables store* Simple
variables can also be pointed to directly using
VAR PTR followed by the name of the variable.
So VAR PTR (A) points to the location of the
value of the variable A. The name of the
variable is stored immediately before its value
so VAR PTR (A) — 2 points to the start of its
name.

SIMPLE VARIABLES
The next program prints out the first six
bytes of the simple variable store showing
how variable A is stored:

1 A=1
10 V= VARPTR(A) — 2
20 FOR K=V TO V+6
30 PRINTPEEK(K);
40 NEXT:PRINT

You should see the following numbers (any
ASCII codes have been translated for you
underneath):

65 0 129 0 0 0 0
A 	+— value

The letter A is stored first then there's a free
byte to leave room for two-lettered variables,
followed by the number 1 in floating point
format.

STRING VARIABLES
Strings are stored in a similar way to simple
variables. Change the A in Line 10 to AA$ and
change Line 1 to:

1 AA$ = "TESTING"

This time you'll get:

65 193 7 0 30 10 0
A A

The name AA is stored in the first two bytes
and the second letter has 128 added to it to
indicate it is a string* The 7 gives the number
of bytes allocated (count them)* The two zeros
are used for garbage collection, that is when
the computer clears out all the old strings and
tidies up all the current ones* The 30 and 10
are the high and low bytes of the address
where the word TESTING is stored*

If you work it out, this is 30*256 + 10,
which equals 7690 and is in fact the position
of the word in the BASIC program* The

Dragon and Tandy save memory this way by
not duplicating the word* But as soon as the
variable is altered, the new contents are put at
the top of available RAM and the'pointers are
altered to point to the new word* All new
strings are stored here at the very top of
available RAM*

ARRAY VARIABLES
The next few lines look at the array variable
store:

10 T= 1:K =1:V = PEEK(29)*256 + PEEK(30)
20 T = PEEK(V + 2) * 256 + PEEK(V + 3)
30 FOR K=V TO V+T-1
40 PRINT PEEK(K);
50 NEXT

Add these lines and RUN the program to get
the list of numbers below:

' 1 DIM A(0,2)
2 A(0,0) =10
3 A(0,2) = 20

65 0 0 24 2 0 3 0 1 132 32 0 0 0
A <— value —>
0 0 0 0 0 133 32 0 0 0
4— value 4- value —>

As usual the first two bytes give the name, and
the next two the length (again, count them to
check). Then follows the number of dimen-
sions, 2, and two pairs of bytes giving the
number of elements set up in reverse order—
the 03 and 01 indicate a 1 by 3 array. After
this are the values themselves in floating point
format. Notice that space is allocated to
element (0,1) even though a value is not
assigned*

Finally, try a string array:

1 DIM A$(2)
2 A$(0) = "TEXT"
3 A$(2) = "ARRAY"

65 128 0 22 1 0 3 4 0 30 24 0 0 0 0 0 0 5 0
30 41 0

This is very similar to the way simple strings
are stored*

There's the 65 for the A, 128 to indicate a
string, two bytes for the length, one for the
dimension and one pair giving the number of
elements* Next follows three groups of five
bytes per string. Each group starts with a
number telling how many characters are in
that string-4 in the first case for TEXT, then a
zero for housekeeping, two bytes giving the
address of the string and another byte for
housekeeping* This is repeated for the other
two strings even the one that hasn't been
defined. The 30's may be different if the
program is located in a different part of
memory*

CUMULATIVE INDEX

An interim index will be published each week. There will be a complete index in the last issue of INPUT

A

	

Alpha-beta algorithm 	 1098

	

Analogue sound signal 	 1092
Animals, measuring growth of 1049-1056
Animation

of UDGs in cliffhanger 	992-997
using colour fill techniques

Acorn 	 955-959
using GCOL 3

Acorn 	 999-1000

	

using paged graphics 	1022-1027
Applications

calendar and diary program
1010-1016,1017-1021,1064-1067

hobbies file, extra options 	947-952

	

magnification program 	1081-1087
text-editor program

852-856,878-883,914-920
Artificial intelligence 884,1096-1097
ASCII codes

of BASIC programs in memory
1106-1112

of Teletext graphics
BBC 	 1068-1073

B
BASIC

adding instructions to
Acorn, Dragon, Spectrum 	844-851

Basic programming
analyzing and storing sounds 1091-1095
animation with paged graphics 1022-1027
colour commands, Acorn 	953-959
Computer Aided Design 	998-1004
designing a new typeface 	838-843
drawing conic sections 857-863,889-895
how programs are stored 	1106-1112
mathematics of growth 	1049-1056
mechanics, principles of 	933-939
multi-key control 	 974-979
musical chords and harmonies 985-991
programming function keys 	825-829
secret codes 	960-965,1044-1048
speeding up BASIC programs 921-927

C
Calendar program

part 1 	 1010-1016
part 2 	 1017-1021
part 3 	 1064-1067

Chords, musical
definition 	 985-986
programs to play

Acorn, Commodore 64 	986-991
Cliffhanger game

part 1—title page 	 904-913
part 2—adding instructions 	928-932
part 3—adding a tune 	966-973
part 4—graphics and merging 992-997
part 5—setting the scene 	1034-1043
part 6—perils and rewards 	1057-1063
part 7—initializing routine 	1101-1105

Codes, secret 	960-965,1044-1048
Colour

defining in machine code
1034-1043,1057-1063

filling in with
Acorn

routines for changing
Commodore 64

using in Teletext mode
BBC

Computer Aided Design
rubber-banding and picking

and dragging 	 998-1004
Conic sections 	857-863,889-895
Cryptography 	960-965,1044-1048

D
Diary program

part 1
	

1010-1016
part 2
	

1017-1021
part 3
	

1064-1067
Digital clock routine
	

896-898
Digital sound signal
	

1092
Drawing

a new typeface 	 838-843
in magnification program 	1081-1087

E
Engineering

see mechanics

F
Fibonacci numbers 	 1056
Filling in with colour

Acorn 	 953-959
Fox and geese game

part 1—principles and graphics
1096-1100

Fruit machine game
part 1 	 1028-1033
part 2 	 1074-1080

Function keys, programming
Acorn, Commodore 64, Vic 20 	826-829

G

Instructions, adding to BASIC
Acorn, Dragon, Spectrum

K
Keyboard, matrix of
Keypresses

detecting
Acorn, Commodore 64, Vic 20
in cliffhanger game 929-932

for direct entry graphics
BBC
	

1073
how they work
	

826,974
multiple, programming for

	
974-979

L
Letter-generator program 	838-843
Lunar touchdown game 	1088-1090

M
Machine code

games programming
see cliffhanger

merging routines 	 992-997
routines for hi-res graphics

Commodore 64 	 872-877
routine to alter BASIC 	844-849
timer routine 	 896-898
tune routine 	 966-973

Magnification program 	1081-1087
Mathematical functions

in mechanics 	 935
speedy use of 	 923-924
to draw curves 	857-863,889-895
to measure growth 	1049-1056

Mechanics
programs to show principles of 933-939

Memory
how BASIC programs are stored in

1106-1112
mapping, definition 	 1023
paged graphics in 	1023-1027
requirements of Teletext mode

BBC 	 1068
saving vs speed 	 923

Merging machine code routines 992-997
Multi-key control, programming for

974-979
Music

analyzing and storing 	1091-1095
chords and harmonies 	985-991
machine code routine for 	966-973

N
Numbers

Fibonacci
	

1056
generation program
	

1054-1055

0
Othello board game

part 1
	

980-984
part 2
	

1005-1009
Overwriting, avoiding
	

994-997

P
PAGE, Acorn
	

1109
Paged graphics
	

1023-1027
PEEK

R
Robotics
	 884-888

Rubber-banding
	 998-1000

S
SAVEing

problems with when merging 	992-997
Scaling

custom typeface 	 924-927
in magnification program 	1081-1087
parabolas and hyperbolas 859-861,863

Search routines
binary and serial 	 924-927
in text-editor program 	914-920

Sort routines
in hobbies file program 	947-953
in text-editor program 	914-920

Sounds, analyzing and storing 1091-1095
Speeding up BASIC programs 921-927
Sprites, Commodore 64

in cliffhanger game 993-995,1058-1060
setting colour of 	1102-1103

Teletext mode, BBC 	1068-1073
Text-editor program

part 1—basic routines 	852-856
part 2—editing facilities 	878-883
part 3—sorting, searching,

formatting and printout 	914-920
Timer routine

for BASIC lines 	 922
machine code 	 896-898

Tokens
for keyboards in memory 	1106-1112
recognizing new 	 844-851

Trace, sound 	 1092-1095
Tree search

in board games 	 1098-1099
Typeface. setting up new 	838-843

U
UDGs

stock, storing
	

1040

V
Variables

managing for program speed 	923-925
storing in memory 	1106-1112

Wordgame
part 1—basic routines 	899-903
part 2—adding the options 	940-945

Zoom effect
in magnification program 	1081-1087

at BASIC programs in memory
1105-1112

Peripherals

	

844-851 	robotics 	 884-888
Picking and dragging 	1000-1004
Plant growth program 	1052-1053
PLOT

	

974-976 	new commands, Acorn 	953-959
PROCedures, Acorn

advantages of 	 922,924

	

827-829
	use of to fill with colour 	954-959

Games
cliffhanger 904-913,928-932,966-973,

992-997,1034-1043,1057-1063,1101-1105
fox and geese 	 1096-1100
fruit machine 	1028-1033,1074-1080
goldmine 	 830-837,864-871
lunar touchdown 	 1088-1090
magnification 	 1081-1087
multi-key control for 	974-979
othello 	 980-984,1005-1009
wordgame 	899-903,940-945

Goldmine game
part 1—basic routines 	830-837
part 2—option subroutines 	864-871

Graphics
colour commands, Acorn 	953-959
effects using curves 	857-863,889-895
hi-res

for custom typeface 	838-843
setting up new commands

Commodore 64 	 872-877
magnification program for 1081-1087

paged, for animation 	1022-1027
picking and dragging 	1000-1004
rubber-banding 	 998-1000
trace of sound 	 1092-1095
using Teletext mode, BBC 	1068-1073

Graphs
in plant growth program 	1052-1054

Grid
for Teletext graphics

953-959 	BBC 	 1068

872-877

1068-1073 	Hobbies file, extra options for 	947-952

The publishers accept no responsibility for unsolicited material sent for publication in INPUT. All tapes and
written material should be accompanied by a stamped, self-addressed envelope.

-J Avert financial disaster (or, at least,
see it coming!) with SPREADSHEETS,
the cornerstone of forward planning

JSave Willie from the rising tide, waft
the clouds along, and gain control over
boulders and boas when you RESET
THE VARIABLES in CLIFFHANGER

/Put theory into practice and a gaggle of
routines to FOX AND GEESE to
initialize the game and map future
moves

—/ See practical applications of flicker
book animation in MORE ABOUT
PAGED GRAPHICS

—/ Computers always sound the same—or
do they? ACORN and COMMODORE
owners can imitate real sounds and
instruments using SOUND ENVELOPES

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

